33 research outputs found

    A Near-to-Far Learning Framework for Terrain Characterization Using an Aerial/Ground-Vehicle Team

    Get PDF
    In this thesis, a novel framework for adaptive terrain characterization of untraversed far terrain in a natural outdoor setting is presented. The system learns the association between visual appearance of different terrain and the proprioceptive characteristics of that terrain in a self-supervised framework. The proprioceptive characteristics of the terrain are acquired by inertial sensors recording measurements of one second traversals that are mapped into the frequency domain and later through a clustering technique classified into discrete proprioceptive classes. Later, these labels are used as training inputs to the adaptive visual classifier. The visual classifier uses images captured by an aerial vehicle scouting ahead of the ground vehicle and extracts local and global descriptors from image patches. An incremental SVM is utilized on the set of images and training sets as they are grabbed sequentially. The framework proposed in this thesis has been experimentally validated in an outdoor environment. We compare the results of the adaptive approach with the offline a priori classification approach and yield an average 12% increase in accuracy results on outdoor settings. The adaptive classifier gradually learns the association between characteristics and visual features of new terrain interactions and modifies the decision boundaries

    Study of Mobile Robot Operations Related to Lunar Exploration

    Get PDF
    Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions that are challenging for optical imagery required for mobile robot navigation. Terrain conditions also impact the operation of mobile robots; distinguishing terrain types prior to physical contact can improve hazard avoidance. This thesis presents the conclusions of a trade-off that uses the results from two studies related to operating mobile robots at the lunar south pole. The lunar south pole presents engineering design challenges for both tele-operation and lidar-based autonomous navigation in the context of a near-term, low-cost, short-duration lunar prospecting mission. The conclusion is that direct-drive tele-operation may result in improved science data return. The first study is on demonstrating lidar reflectance intensity, and near-infrared spectroscopy, can improve terrain classification over optical imagery alone. Two classification techniques, Naive Bayes and multi-class SVM, were compared for classification errors. Eight terrain types, including aggregate, loose sand and compacted sand, are classified using wavelet-transformed optical images, and statistical values of lidar reflectance intensity. The addition of lidar reflectance intensity was shown to reduce classification errors for both classifiers. Four types of aggregate material are classified using statistical values of spectral reflectance. The addition of spectral reflectance was shown to reduce classification errors for both classifiers. The second study is on human performance in tele-operating a mobile robot over time-delay and in lighting conditions analogous to the south lunar pole. Round-trip time delay between operator and mobile robot leads to an increase in time to turn the mobile robot around obstacles or corners as operators tend to implement a `wait and see\u27 approach. A study on completion time for a cornering task through varying corridor widths shows that time-delayed performance fits a previously established cornering law, and that varying lighting conditions did not adversely affect human performance. The results of the cornering law are interpreted to quantify the additional time required to negotiate a corner under differing conditions, and this increase in time can be interpreted to be predictive when operating a mobile robot through a driving circuit

    Autonomous Soil Assessment System for Planetary Rovers

    Get PDF
    Planetary rovers face mobility hazards associated with various classes of terrains they traverse, and hence it is desirable to enable remote prediction of terrain trafficability (ability to traverse) properties. For that reason, the development of algorithms for assessing terrain type and mobility properties, as well as for coupling these data in an online learning framework, represent important capabilities for next-generation rovers. This work focuses mainly on 3-way terrain classification (classifying as one of the types: Sand, Bedrock and Gravel) as well as on the correlation of terrain types and their mobility properties in a framework that enables online learning. For terrain classification, visual descriptors are developed, which are primarily based on visual texture and are captured in form of histograms of edge filter responses at various scales and orientations. The descriptors investigated in this work are HOG (Histogram of Oriented Gradients), GIST, MR8 (Maximum Response) Textons and the classification techniques implemented here are nearest and k-nearest neighbors. Further, monochrome image intensity is used as an additional feature to further distinguish bedrock from the other terrain types. No major differences in performance are observed between the three descriptors, leading to the adoption of the HOG approach due to its lower computational complexity (over 3 orders of magnitude difference in complexity between HOG and Textons) and thus higher applicability to planetary missions. Tests demonstrate an accuracy between 70% and 93% (81% average) for the classification using the HOG descriptor, on images taken by NASA’s Mars rovers. To predict terrain trafficability ahead of the rover, exteroceptive data namely terrain type and slope, are correlated with the trafficability metrics namely slip, sinkage and roughness, in a learning framework. A queue based data structure has been implemented for the correlation, which keeps discarding the older data so as to avoid diminishing the effect of newer data samples, when there is a large amount of data. This also ensures that the rover will be able to adapt to changing terrains responses and predict the risk level (low, medium or high) accordingly. Finally, all the algorithms developed in this work were tested and verified in a field test demo at the CSA (Canadian Space Agency) mars yard. The risk metric in combination with the queue based data structure, can achieve stable predictions in consistent terrains, while also being responsive to sudden changes in terrain trafficability

    From locomotion to cognition: Bridging the gap between reactive and cognitive behavior in a quadruped robot

    Full text link
    The cognitivistic paradigm, which states that cognition is a result of computation with symbols that represent the world, has been challenged by many. The opponents have primarily criticized the detachment from direct interaction with the world and pointed to some fundamental problems (for instance the symbol grounding problem). Instead, they emphasized the constitutive role of embodied interaction with the environment. This has motivated the advancement of synthetic methodologies: the phenomenon of interest (cognition) can be studied by building and investigating whole brain-body-environment systems. Our work is centered around a compliant quadruped robot equipped with a multimodal sensory set. In a series of case studies, we investigate the structure of the sensorimotor space that the application of different actions in different environments by the robot brings about. Then, we study how the agent can autonomously abstract the regularities that are induced by the different conditions and use them to improve its behavior. The agent is engaged in path integration, terrain discrimination and gait adaptation, and moving target following tasks. The nature of the tasks forces the robot to leave the ``here-and-now'' time scale of simple reactive stimulus-response behaviors and to learn from its experience, thus creating a ``minimally cognitive'' setting. Solutions to these problems are developed by the agent in a bottom-up fashion. The complete scenarios are then used to illuminate the concepts that are believed to lie at the basis of cognition: sensorimotor contingencies, body schema, and forward internal models. Finally, we discuss how the presented solutions are relevant for applications in robotics, in particular in the area of autonomous model acquisition and adaptation, and, in mobile robots, in dead reckoning and traversability detection

    Adaptive Localization and Mapping for Planetary Rovers

    Get PDF
    Future rovers will be equipped with substantial onboard autonomy as space agencies and industry proceed with missions studies and technology development in preparation for the next planetary exploration missions. Simultaneous Localization and Mapping (SLAM) is a fundamental part of autonomous capabilities and has close connections to robot perception, planning and control. SLAM positively affects rover operations and mission success. The SLAM community has made great progress in the last decade by enabling real world solutions in terrestrial applications and is nowadays addressing important challenges in robust performance, scalability, high-level understanding, resources awareness and domain adaptation. In this thesis, an adaptive SLAM system is proposed in order to improve rover navigation performance and demand. This research presents a novel localization and mapping solution following a bottom-up approach. It starts with an Attitude and Heading Reference System (AHRS), continues with a 3D odometry dead reckoning solution and builds up to a full graph optimization scheme which uses visual odometry and takes into account rover traction performance, bringing scalability to modern SLAM solutions. A design procedure is presented in order to incorporate inertial sensors into the AHRS. The procedure follows three steps: error characterization, model derivation and filter design. A complete kinematics model of the rover locomotion subsystem is developed in order to improve the wheel odometry solution. Consequently, the parametric model predicts delta poses by solving a system of equations with weighed least squares. In addition, an odometry error model is learned using Gaussian processes (GPs) in order to predict non-systematic errors induced by poor traction of the rover with the terrain. The odometry error model complements the parametric solution by adding an estimation of the error. The gained information serves to adapt the localization and mapping solution to the current navigation demands (domain adaptation). The adaptivity strategy is designed to adjust the visual odometry computational load (active perception) and to influence the optimization back-end by including highly informative keyframes in the graph (adaptive information gain). Following this strategy, the solution is adapted to the navigation demands, providing an adaptive SLAM system driven by the navigation performance and conditions of the interaction with the terrain. The proposed methodology is experimentally verified on a representative planetary rover under realistic field test scenarios. This thesis introduces a modern SLAM system which adapts the estimated pose and map to the predicted error. The system maintains accuracy with fewer nodes, taking the best of both wheel and visual methods in a consistent graph-based smoothing approach

    Shallow neural networks for autonomous robots

    Get PDF
    The use of Neural Networks (NNs) in modern applications is already well established thanks to the technological advancements in processing units and Deep Learning (DL), as well as the availability of deployment frameworks and services. However, the embedding of these methods in robotic systems is problematic when it comes to field operations. The use of Graphics Processing Units (GPUs) for such networks requires high amounts of power which would lead to shortened operational times. This is not desired since autonomous robots already need to manage their power supply to accommodate the lengths of their missions which can extend from hours to days. While external processing is possible, real-time monitoring can become unfeasible where delays are present. This also applies to autonomous robots that are deployed for underwater or space missions. For these reasons, there is a requirement for shallow but robust NN-based solutions that enhance the autonomy of a robot. This dissertation focuses on the design and meticulous parametrization complemented by methods that explain hyper-parameter importance. This is performed in the context of different settings and problems for autonomous robots in field operations. The contribution of this thesis comes in the form of autonomy augmentation for robots through shallow NNs that can potentially be embedded in future systems carrying NN processing units. This is done by implementing neural architectures that use sensor data to extract representations for event identification and learn patterns for event anticipation. This work harnesses Long Short-Term Memory networks (LSTMs) as the underpinning framework for time series representation and interpretation. This has been tested in three significant problems found in field operations: hardware malfunction classification, survey trajectory classification and hazardous event forecast and detection

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools
    corecore