1,392 research outputs found

    Tactile-based Manipulation of Deformable Objects with Dynamic Center of Mass

    No full text
    International audienceTactile sensing feedback provides feasible solutions to robotic dexterous manipulation tasks. In this paper, we present a novel tactile-based framework for detecting/correcting slips and regulating grasping forces while manipulating de-formable objects with the dynamic center of mass. This framework consists of a tangential force based slip detection method and a deformation prevention approach relying on weight estimation. Moreover, we propose a new strategy for manipulating deformable heavy objects. Objects with different stiffnesses, surface textures, and centers of mass are tested in experiments. Results show that proposed approaches are capable of handling objects with uncertainties in their characteristics, and also robust to external disturbances

    Improved Normal and Shear Tactile Force Sensor Performance via Least Squares Artificial Neural Network (LSANN)

    Get PDF
    This paper presents a new approach to the characterization of tactile array sensors that aims to reduce the computational time needed for convergence to obtain a useful estimator for normal and shear forces. This is achieved by breaking up the sensor characterization into two parts: a linear regression portion using multivariate least squares regression, and a nonlinear regression portion using a neural network as a multi-input, multi-output function approximator. This procedure has been termed Least Squares Artificial Neural Network (LSANN). By applying LSANN on the 2nd generation MIT Cheetah footpad, the convergence speed for the estimator of the normal and shear forces is improved by 59.2% compared to using only the neural network alone. The normalized root mean squared error between the two methods are nearly identical at 1.17% in the normal direction, and 8.30% and 10.14% in the shear directions. This approach could have broader implications in greatly reducing the amount of time needed to train a contact force estimator for a large number of tactile sensor arrays (i.e. in robotic hands and skin).United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) programSingapore. Agency for Science, Technology and Researc

    Tactile Sensors for Friction Estimation and Incipient Slip Detection - Toward Dexterous Robotic Manipulation:A Review

    Get PDF
    Humans can handle and manipulate objects with ease; however, human dexterity has yet to be matched by artificial systems. Receptors in our fingers and hands provide essential tactile information to the motor control system during dexterous manipulation such that the grip force is scaled to the tangential forces according to the coefficient of friction. Likewise, tactile sensing will become essential for robotic and prosthetic gripping performance as applications move toward unstructured environments. However, most existing research ignores the need to sense the frictional properties of the sensor-object interface, which (along with contact forces and torques) is essential for finding the minimum grip force required to securely grasp an object. Here, we review this problem by surveying the field of tactile sensing from the perspective that sensors should: 1) detect gross slip (to adjust the grip force); 2) detect incipient slip (dependent on the frictional properties of the sensor-object interface and the geometries and mechanics of the sensor and the object) as an indication of grip security; or 3) measure friction on contact with an object and/or following a gross or incipient slip event while manipulating an object. Recommendations are made to help focus future sensor design efforts toward a generalizable and practical solution to sense, and hence control grip security. Specifically, we propose that the sensor mechanics should encourage incipient slip, by allowing parts of the sensor to slip while other parts remain stuck, and that instrumentation should measure displacement and deformation to complement conventional force, pressure, and vibration tactile sensing

    Comparing Piezoresistive Substrates for Tactile Sensing in Dexterous Hands

    Full text link
    While tactile skins have been shown to be useful for detecting collisions between a robotic arm and its environment, they have not been extensively used for improving robotic grasping and in-hand manipulation. We propose a novel sensor design for use in covering existing multi-fingered robot hands. We analyze the performance of four different piezoresistive materials using both fabric and anti-static foam substrates in benchtop experiments. We find that although the piezoresistive foam was designed as packing material and not for use as a sensing substrate, it performs comparably with fabrics specifically designed for this purpose. While these results demonstrate the potential of piezoresistive foams for tactile sensing applications, they do not fully characterize the efficacy of these sensors for use in robot manipulation. As such, we use a high density foam substrate to develop a scalable tactile skin that can be attached to the palm of a robotic hand. We demonstrate several robotic manipulation tasks using this sensor to show its ability to reliably detect and localize contact, as well as analyze contact patterns during grasping and transport tasks.Comment: 10 figures, 8 pages, submitted to ICRA 202

    An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers

    Get PDF
    Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the echanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach

    An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers

    Get PDF
    Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the echanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach

    Development of PVDF tactile dynamic sensing in a behaviour-based assembly robot

    Get PDF
    The research presented in this thesis focuses on the development of tactile event sig¬ nature sensors and their application, especially in reactive behaviour-based robotic assembly systems.In pursuit of practical and economic sensors for detecting part contact, the application ofPVDF (polyvinylidene fluoride) film, a mechanical vibration sensitive piezo material, is investigated. A Clunk Sensor is developed which remotely detects impact vibrations, and a Push Sensor is developed which senses small changes in the deformation of a compliant finger surface. The Push Sensor is further developed to provide some force direction and force pattern sensing capability.By being able to detect changes of state in an assembly, such as a change of contact force, an assembly robot can be well informed of current conditions. The complex structure of assembly tasks provides a rich context within which to interpret changes of state, so simple binary sensors can conveniently supply a lot more information than in the domain of mobile robots. Guarded motions, for example, which require sensing a change of state, have long been recognised as very useful in part mating tasks. Guarded motions are particularly well suited to be components of assembly behavioural modules.In behaviour-based robotic assembly systems, the high level planner is endowed with as little complexity as possible while the low level planning execution agent deals with actual sensing and action. Highly reactive execution agents can provide advantages by encapsulating low level sensing and action, hiding the details of sensori-motor complexity from the higher levels.Because behaviour-based assembly systems emphasise the utility of this kind of quali¬ tative state-change sensor (as opposed to sensors which measure physical quantities), the robustness and utility of the Push Sensor was tested in an experimental behaviourbased system. An experimental task of pushing a ring along a convoluted stiff wire is chosen, in which the tactile sensors developed here are aided by vision. Three differ¬ ent methods of combining these different sensors within the general behaviour-based paradigm are implemented and compared. This exercise confirms the robustness and utility of the PVDF-based tactile sensors. We argue that the comparison suggests that for behaviour-based assembly systems using multiple concurrent sensor systems, bottom-level motor control in terms of force or velocity would be more appropriate than positional control. Behaviour-based systems have traditionally tried to avoid symbolic knowledge. Considering this in the light of the above work, it was found useful to develop a taxonomy of type of knowledge and refine the prohibition

    Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    Get PDF
    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications
    corecore