95 research outputs found

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations

    Modeling and control of a pneumatic muscle actuator

    Get PDF
    This thesis presents the theoretical and experimental study of pneumatic servo position control systems based on pneumatic muscle actuators (PMAs). Pneumatic muscle is a novel type of actuator which has been developed to address the control and compliance issues of conventional cylindrical actuators. Compared to industrial pneumatic cylinders, muscle actuators have many ideal properties for robotic applications providing an interesting alternative for many advanced applications. However, the disadvantage is that muscle actuators are highly nonlinear making accurate control a real challenge. Traditionally, servo-pneumatic systems use relatively expensive servo or proportional valve for controlling the mass flow rate of the actuator. This has inspired the research of using on/off valves instead of servo valves providing a low-cost option for servo-pneumatic systems. A pulse width modulation (PWM) technique, where the mass flow is provided in discrete packets of air, enables the use of similar control approaches as with servo valves. Although, the on/off valve based servo-pneumatics has shown its potential, it still lacks of analytical methods for control design and system analysis. In addition, the literature still lacks of studies where the performance characteristics of on/off valve controlled pneumatic systems are clearly compared with servo valve approaches. The focus of this thesis has been on modeling and control of the pneumatic muscle actuator with PWM on/off valves. First, the modeling of pneumatic muscle actuator system controlled by a single on/off valve is presented. The majority of the effort focused on the modeling of muscle actuator nonlinear force characteristics and valve mass flow rate modeling. A novel force model was developed and valve flow model for both simulation and control design were identified and presented. The derived system models (linear and nonlinear), were used for both control design and utilized also in simulation based system analysis. Due to highly nonlinear characteristics and uncertainties of the system, a sliding mode control (SMC) was chosen for a control law. SMC strategy has been proven to be an efficient and robust control strategy for highly nonlinear pneumatic actuator applications. Different variations of sliding mode control, SMC with linear model (SMCL) and nonlinear model (SMCNL) as well as SMC with integral sliding surface (SMCI) were compared with a traditional proportional plus velocity plus acceleration control with feed-forward (PVA+FF) compensation. Also, the effects of PWM frequency on the system performance were studied. Different valve configurations, single 3/2, dual 2/2, and servo valve, for controlling a single muscle actuator system were studied. System models for each case were formulated in a manner to have a direct comparison of the configuration and enabling the use of same sliding mode control design. The analysis of performance included the sinusoidal tracking precision and robustness to parameter variations and external disturbances. In a similar manner, a comparison of muscle actuators in an opposing pair configuration controlled by four 2/2 valves and servo valve was executed. Finally, a comparison of a position servo realized with pneumatic muscle actuators to the one realized with traditional cylinder was presented. In these cases, servo valve with SMC and SMCI were used to control the systems. The analysis of performance included steady-state error in point-to-point positioning, the RMSE of sinusoidal tracking precision, and robustness to parameter variations

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Nonlinear control of an exoskeleton seven degrees of freedom robot to realize an active and passive rehabilitation tasks

    Get PDF
    This doctoral thesis proposes the developments of an exoskeleton robot used to rehabilitate patients with upper-limb impairment, named ETS-MARSE robot. The developments included in this work are the design, and validation of a kinematic inverse solution and nonlinear control strategy for an upper limb exoskeleton robot. These approaches are used in passive and active rehabilitation motion in presence of dynamics and kinematics uncertainties and unexpected disturbances. Considering the growing population of post-stroke victims, there is a need to improve accessibility to physiotherapy by using the modern robotic rehabilitation technology. Recently, rehabilitation robotics attracted a lot of attention from the scientific community since it is able to overcome the limitations of conventional physical therapy. The importance of the rehabilitation robot lies in its ability to provide intensive physiotherapy for a long period time. The measured data of the robot allows the physiotherapist to accurately evaluate the patient’s performance. However, these devices are still part of an emerging area and present many challenges compared to the conventional robotic manipulators, such as the high nonlinearity, dimensional (high number of DOFs) and unknown dynamics (uncertainties). These limitations are provoked due to their complex mechanical structure designed for human use, the types of assistive motion, and the sensitivity of the interaction with a large diversity of human wearers. As a result, these conditions make the robot system vulnerable to dynamic uncertainties and external disturbances such as saturation, friction forces, backlash, and payload. Likewise, the interaction between human and the exoskeleton make the system subjected to external disturbances due to different physiological conditions of the subjects like the different weight of the upper limb for each subject. During a rehabilitation movement, the nonlinear uncertain dynamic model and external forces can turn into unknown function that can affect the performance of the exoskeleton robot. The main challenges addressed in this thesis are firstly to design a human inverse kinematics solution to perform a smooth movement similar to natural human movement (human-like motion). Secondly, to develop controllers characterized by a high-level of robustness and accuracy without any sensitivity to uncertain nonlinear dynamics and unexpected disturbances. This will give the control system more flexibility to handle the uncertainties and parameters’ variation in different modes of rehabilitation motion (passive and active)

    Interaction Motion Control on Tri-finger Pneumatic Grasper using Variable Convergence Rate Prescribed Performance Impedance Control with Pressure-based Force Estimator

    Get PDF
    Pneumatic robot is a fluid dynamic based robot system which possesses immense uncertainties and nonlinearities over its electrical driven counterpart. Requirement for dynamic motion handling further challenged the implemented control system on both aspects of interaction and compliance control. This study especially set to counter the unstable and inadaptable proportional motions of pneumatic robot grasper towards its environment through the employment of Variable Convergence Rate Prescribed Performance Impedance Control (VPPIC) with pressure-based force estimation (PFE). Impedance control was derived for a single finger of Tri-finger Pneumatic Grasper (TPG) robot, with improvement being subsequently made to the controller’s output by appropriation of formulated finite-time prescribed performance control. Produced responses from exerted pressure of the maneuvered pneumatic piston were then recorded via derived PEE with adherence to both dynamics and geometry of the designated finger. Validation of the proposed method was proceeded on both circumstances of human hand as a blockage and ping-pong ball as methodical representation of a fragile object. Developed findings confirmed relatively uniform force sensing ability for both proposed PEE and load sensor as equipped to the robot’s fingertip with respect to the experimented thrusting and holding of a human hand. Sensing capacity of the estimator has also advanced beyond the fingertip to enclose its finger in entirety. Whereas stable interaction control at negligible oscillation has been exhibited from VPPIC against the standard impedance control towards gentle and compression-free handling of fragile objects. Overall positional tracking of the finger, thus, justified VPPIC as a robust mechanism for smooth operation amid and succeed direct object interaction, notwithstanding its transcendence beyond boundaries of the prescribed performance constraint

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    • …
    corecore