1,505 research outputs found

    Sliding Mode Control of Time-Delay Systems with Delayed Nonlinear Uncertainties

    Get PDF
    This paper considers a class of time delay systems with delayed states and non-linear uncertainties using sliding mode techniques. In order to improve robustness, matched and mismatched disturbances are considered and assumed to be nonlinear functions of system states and delayed states. A sliding function is designed and a set of su?cient conditions is derived to guarantee the stability of the corresponding sliding motion by using Lyapunov-Razumikhin approach which allows large time varying delay with fast changing rate. A delay dependent sliding mode control is synthesized to drive the system to the sliding surface in ?nite time and maintain a sliding motion thereafter. E?ectiveness of the proposed method is tested via a case study on a continuous stirred tank reactor system

    Decentralised sliding mode control for a class of nonlinear interconnected systems

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems. Both matched uncertainties in the isolated subsystems and mismatched uncertainties associated with the interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed in a decentralised manner by only employing local information. Conditions are determined which enable information on the interconnections to be employed in decentralised controller design to reduce conservatism. The developed results are applied to an automated highway system. Simulation results pertaining to a high-speed following system are presented to demonstrate the effectiveness of the approach

    An observer design for active suspension system

    Get PDF
    The purpose of this paper is to construct an active suspension for a quarter car model with observer design. The proportional-integral sliding mode is chosen as a control strategy, and the road profile is estimated by using an observer design. The performance of the proposed controller will be compared with the linear quadratic regulator by performing extensive computer simulation

    Sliding mode control of active suspension system

    Get PDF
    The purpose of this paper is to present a new approach in controlling an active suspension system. This approach utilized the proportional integral sliding mode control scheme. Using this type of sliding surface, the asymptotic stability of the system during sliding mode is assured compared to the conventional sliding surface. The proposed control scheme is applied in designing an automotive active suspension system for a quarter-car model and its performance is compared with the existing passive suspension system. A simulation study is performed to prove the effectiveness of this control design

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities

    Get PDF
    This is the post-print version of the paper. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper investigates the robust sliding mode control (SMC) problem for a class of uncertain nonlinear stochastic systems with mixed time delays. Both the sectorlike nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and randomly occurring nonlinearities obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The mixed time delays consist of both the discrete and the distributed delays. The time-varying delays are allowed in state. By employing the idea of delay fractioning and constructing a new Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the stability of the system dynamics in the specified sliding surface by solving a certain semidefinite programming problem. A full-state feedback SMC law is designed to guarantee the reaching condition. A simulation example is given to demonstrate the effectiveness of the proposed SMC scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    • 

    corecore