1,889 research outputs found

    Chattering-free sliding mode control with unidirectional auxiliary surfaces for miniature helicopters

    Get PDF
    Purpose – This article proposes a chattering-free sliding mode control scheme with unidirectional auxiliary surfaces (UAS-SMC) for small miniature autonomous helicopters (Trex 250). Design/methodology/approach – The proposed UAS-SMC scheme consists of a nested sequence of rotor dynamics, angular rate, Euler angle, velocity and position loops. Findings – It is demonstrated that the UAS-SMC strategy can eliminate the chattering phenomenon exhibiting in the convenient SMC method and achieve a better approaching speed. Originality/value – The proposed control strategy is implemented on the helicopter and flight tests clearly demonstrate that a much better performance could be achieved, compared with convenient SMC schemes

    Disturbance observer based sliding mode control for unmanned helicopter hovering operations in presence of external disturbances

    Get PDF
    Numerous control techniques are developed for miniature unmanned helicopters to do hover operation with each method having its own advantages and limitations. During the hover operation helicopters suffer from unknown external disturbances such as wind and ground effect. For a stable operation, these disturbances must be compensated accurately. This paper presents a disturbance observer based sliding mode control technique for small-scale unmanned helicopters to do hover operation in presence of external disturbances. To counteract both matched and mismatched uncertainties a new sliding surface is designed based on the disturbances estimations. The controller design is based on the linearized state-space model of the helicopter which effectively describes helicopter dynamics during the hover operations. The model mismatch and external disturbances are estimated as lumped disturbances and are compensated in the controller design. The proposed controller reduces chattering and is capable of handling matched and mismatched uncertainties. The control performance is successfully tested in Simulink

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory

    Full text link
    This paper is about modeling and control of miniature quadrotors, with a special emphasis on attitude control. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircraft: the DraganFlyer quadrotor, which has been hardware-modified in order to perform experimental autonomous flying. Hybrid Backstepping control and the Frenet-Serret theory is used for attitude stabilization, introducing a desired attitude angle acceleration function dependent on aircraft velocity. Finally, improvements on disturbance rejection and attitude tracking at moderate aircraft speeds are validated through various simulation scenarios (indoor navigation based on camera tracking), and flight experiments conducted on the DraganFlyer quadroto

    Seguimiento de trayectoria robusta de un cuadricóptero sin mediciones de velocidad utilizando el control super-twisting generalizado

    Get PDF
    This paper presents a nonlinear control strategy to solve the path tracking problem for a quadrotor unmanned aerial vehicle under perturbations. This strategy is based on the Generalized Super-Twisting Algorithm (GSTA); it means the second order sliding mode technique, which is able to ensure robustness with respect to modeling errors and bounded external disturbances due to the added extra linear correction terms. The controller goal is to achieve suitable path tracking of desired absolute positions and yaw angle while keeping the stability of the pitch and roll angle, in spite of the presence of disturbances and the handling of all system nonlinearities. In this work, a scenario in which velocities measurements are not available and are estimated by the Generalized Super-Twisting Observer is considered. Finally, the simulation results are also provided in order to illustrate the performances of the proposed controller.Este artículo presenta una estrategia de control no lineal para resolver el problema de seguimiento de trayectorias para un vehículo aéreo no tripulado bajo perturbaciones. Esta estrategia se basa en el Algoritmo Super-Twisting Generalizado (GSTA); es una técnica de modos deslizantes de segundo orden, la cual es capaz de asegurar robustez con respecto a errores de modelado y perturbaciones externas acotadas debido a los términos de corrección lineales añadidos respecto al algoritmo Super Twisting convencional. El objetivo del controlador es conseguir un seguimiento de trayectoria adecuado de las posiciones absolutas deseadas y del ángulo de guiñada, mientras se mantiene la estabilidad del ángulo de inclinación y de alabeo, a pesar de la presencia de perturbaciones y las no linealidades del sistema. En este trabajo, es considerado un escenario en el que las mediciones de las velocidades no están disponibles y son estimadas por el Observador Super-Twisting Generalizado. Finalmente, también fueron proporcionados los resultados de simulación para ilustrar el desempeño del controlador propuesto

    Rotary-wing MAV Modeling & Control for indoor scenarios

    Get PDF
    This paper is about modeling and control of Miniature Aerial Vehicles ¿MAVs for indoor scenarios, specially using, micro coaxial and quadrotor systems. Mathematical models for simulation and control are introduced and subsequently applied to the commercial aircraft: the DraganFlyer quadrotor and the Micro-Mosquito coaxial flying vehicle. The MAVs have been hardware-modified in order to perform experimental autonomous flight. A novel approach for control based on Hybrid Backstepping and the Frenet-Serret theory is used for attitude stabilization (Backstepping+FST), introducing a desired attitude angle acceleration function dependent on aircraft velocity. Results of autonomous hovering and tracking are presented based on the scheme we propose for control and attitude stabilization when MAV is maneuvering at moderate speeds
    corecore