759 research outputs found

    Self organizing fuzzy sliding mode controller for the position control of a permanent magnet synchronous motor drive

    Get PDF
    AbstractIn this paper, a self organizing fuzzy sliding mode controller (SOFSMC) which emulates the fuzzy controller with gain auto-tuning is proposed for a permanent magnet synchronous motor (PMSM) drive. The proposed controller is used for the position control of the PMSM drive. The performance and robustness of the control system is tested for nonlinear motor load torque disturbance and parameter variations. It has a novel gain self organizing strategy in response to the transient or tracking responses requirement. To illustrate the performance of the proposed controller, the simulation studies are presented separately for the SOFSMC and the fuzzy controller with gain auto-tuning. The results are compared with each other and discussed in detail. Simulation results showing the effectiveness of the proposed control system are confirmed under the different position changes

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller

    Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System

    Get PDF
    This thesis presents a control system for a 2MW direct-drive permanent magnet synchronous generator wind turbine system with the objectives to capture the optimal power from the wind and ensure a maximum efficiency for this system. Moreover, in order to eliminate the electrical speed sensor mounted on the rotor shaft of the PMSG to reduce the system hardware complexity and improve the reliability of the system, a sliding mode observer based PM rotor position and speed sensorless control algorithm is presented here. The mathematical models for the wind turbine and the permanent magnet synchronous machine are first given in this thesis, and then optimal power control algorithms for this system are presented. The optimal tip speed ratio based maximum power point tracking control is utilized to ensure the maximum power capture for the system. The field oriented control algorithm is applied to control the speed of the PMSG with the reference of the wind speed. In the grid-side converter control, voltage oriented control algorithm is applied to regulate the active and reactive power injected into the power grid. What is more, sliding mode observer based sensorless control algorithm is also presented here. The simulation study is carried out based on MATLAB/Simulink to validate the proposed system control algorithms

    Combined Traction and Energy Recovery Motor for Electric Vehicles

    Get PDF
    Electric vehicle manufacturers are looking for ways to optimize energy use for vehicle range extension and reduction of battery capacity. Electric motors have lower efficiencies at very low speed and high torque. This is typically at vehicle launch from standstill, at very low speeds, and during energy regeneration at lower speeds and approaching standstill. The KersTech solution is a breakthrough technology allowing supplement of the electric drive with a hydraulic drive, active in lower speeds ranges, dropping out as the electric motor takes over in its higher efficiency range of operation. The report consists of four parts. Part I presents novel the hybrid vehicle simulations in MATLAB. Both the Diesel-Hydraulic Hybrid Vehicle and Electric-Hydraulic Hybrid Vehicle have been simulated and compared in this report. Part II deals with the electrical system control design. Permanent magnet synchronous motors have been widely used in hybrid electric vehicle applications. Permanent magnet synchronous motors have a small size, high efficiency and high performance. This report presents a mathematical model of permanent magnet synchronous motor. Power switching electronics are used to generate the desired voltage/current from DC source. A pulse width modulation technique controls the switching power electronic by creating a control signals which are applied to their gates. The whole circuit of the inverter based on space vector pulse width modulation is simulated in MATLAB/Simulink and its results are presented. Field-oriented control is implemented via digital signal processors to control the permanent magnet synchronous motor. Clarke and Park transformations are applied to “abc coordinate frame of the permanent magnet synchronous motor model to get the “qd coordinate frame used in the field oriented control technique. Hence, the developed torque and the magnetizing the flux component are controlled separately. PI controller is used to control the motor speed and torque. PI controllers are designed using frequency response method and a symmetric optimum method. The whole system is simulated based on the mathematical model of PMSM and field oriented control method with designed PI controllers. Simulation results show the PMSM to have perfect dynamic response. A digital signal processor can be used to implement the field oriented control algorithms and compute the parameters in real time. Implementation of field oriented control of a permanent magnet synchronous motor shows that the motor has satisfactory response in terms of torque ripple and speed response. Nonlinear control, including Sliding Mode Controller and State Dependent Linear Matrix Inequality Controller, are also proposed as a powerful control technique to govern the speed of the permanent magnet synchronous motor in hybrid vehicle applications. In Part III, we discuss the hydraulic system design. Finally, in Part IV, the dSPACE hardware controller is used for the overall control system design

    GFTSM-based Model Predictive Torque Control for PMSM Drive System With Single Phase Current Sensor

    Full text link
    Copyright © 2017 Acta Automatica Sinica. All rights reserved. A global fast terminal sliding mode (GFTSM)-based model predictive torque control (MPTC) strategy is developed for permanent magnet synchronous motor (PMSM) drive system with only one phase current sensor. Generally two phase-current sensors are indispensable for MPTC. In response to only one phase current sensor available and the change of stator resistance, a novel adaptive observer for estimating the remaining two phase currents and time-varying stator resistance is proposed to perform MPTC. Moreover, in view of the variation of system parameters and external disturbance, a new GFTSM-based speed regulator is synthesized to enhance the drive system robustness. In this paper, the GFTSM, based on sliding mode theory, employs the fast terminal sliding mode in both the reaching stage and the sliding stage. The resultant GFTSM-based MPTC PMSM drive system with single phase current sensor has excellent dynamical performance which is very close to the GFTSM-based MPTC PMSM drive system with two-phase current sensors. On the other hand, compared with proportional-integral (PI)-based and sliding mode (SM)-based MPTC PMSM drive systems, it possesses better dynamical response and stronger robustness as well as smaller total harmonic distortion (THD) index of three-phase stator currents in the presence of variation of load torque. The simulation results validate the feasibility and efiectiveness of the proposed scheme

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller. 2018 by the authors.Scopu

    Super-Twisting Hybrid Control for Ship-Borne PMSM

    Get PDF

    Three-Level Reduced Switch AC/DC/AC Power Conversion System for High Voltage Electric Vehicles

    Get PDF
    Two of the main challenges of recent electric vehicles (EVs) are the charging time and high initial cost. To solve the problem associated with long charging time, the car manufacturers are moving from 400 V battery EV (BEV) to 800 V BEV, which enables the utilization of multi-level converters in EV applications. This paper presents a power conversion system consisting of a Vienna rectifier and a two/three level hybrid inverter as a machine-side inverter to drive a permanent-magnet synchronous motor (PMSM). The Vienna rectifier improves the quality of the grid-side current and provides a regulated DC-link voltage. The proposed inverter, known as a 10-switch inverter, offers high output current quality with a lower number of active switches, making it compact and cost-effective. The field-oriented control (FOC), along with the SPWM modulation, is implemented to control the system. A reliable and cost-effective PMSM drive system demands sensorless control; therefore, a sliding mode observer (SMO) is used to estimate the rotor position and velocity. The accuracy of the proposed system was proved through the simulation results from MATLAB/Simulink.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Discrete-time sliding mode control based on disturbance observer applied to current control of permanent magnet synchronous motor

    Get PDF
    This paper proposes a robust current control technique based on a discrete-time sliding mode controller and a disturbance observer for high-performance permanent magnet synchronous motor (PMSM) drives. This scheme is applied in the PMSM current control loops to enable the decoupling between the dq current axes, rejection of disturbances caused by mechanical load changes and robustness under parametric uncertainties. In order to ensure the discrete-time sliding mode properties, which make the system cross the sliding surface at each sampling period, the PMSM model is extended, including the digital implementation delay resulting from the discrete-time algorithm execution. The development of this method allows direct implementation in microcontrollers and digital signal processors. Stability and convergence analysis are developed in the discrete-time domain. Simulation and experimental results demonstrate the effectiveness and good performance of the proposed current control approach
    • …
    corecore