3,556 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Dual Design PID Controller for Robotic Manipulator Application

    Get PDF
    This research introduces a dual design proportional–integral–derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chien–Hrones–Reswick (CHR)  technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption

    A Review Study for Robotic Exoskeletons Rehabilitation Devices

    Get PDF
    Nowadays, robotic exoskeletons demonstrated great abilities to replace traditional rehabilitation processes for activating neural abilities performed by physiotherapists. The main aim of this review study is to determine a state-of-the-art robotic exoskeleton that can be used for the rehabilitation of the lower limb of people who have mobile disabilities as a result of stroke and musculoskeletal conditions. The study presented the anatomy of the lower limb and the biomechanics of human gait to explain the mechanism of the limb, which helps in constructing a robotic exoskeleton. A state-of-the-art review of more than 100 articles related to robotic exoskeletons and their constructions, functionality, and rehabilitation capabilities are accurately implemented. Moreover, the study included a review of upper limb rehabilitation that has been studied locally and successfully applied to patients who exhibited significant improvements. Results of recent studies herald an abundant future for robotic exoskeletons used in the rehabilitation of the lower extremity. Significant improvement in the mechanism and design, as well as the quality, were observed. Also, impressive results were obtained from the performance when used by patients. This study concludes that working and improving the robotic devices continuously in accordance with the cases are necessary to be treated with the best results and the lowest cost

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    A robotic platform for precision agriculture and applications

    Get PDF
    Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.Le tecniche agricole sono state migliorate nel corso dei secoli per soddisfare la crescente domanda di aumento della popolazione mondiale. I recenti progressi tecnologici in termini di piattaforme robotiche possono essere sfruttati in questo contesto. Poiché la gestione del frutteto è una delle applicazioni più impegnative, a causa della sua struttura arborea e della necessaria interazione con l'ambiente, è stata oggetto di ricerca per fornire una soluzione personalizzata che sviluppi un nuovo concetto di veicolo agricolo. Il risultato si è concretizzato in un veicolo cingolato leggero, capace di effettuare una navigazione autonoma sia nello scenario di pieno campo che all'interno dei frutteti (navigazione interfilare). La progettazione meccanica, insieme all'implementazione del software, sono stati dettagliati per evidenziarne i punti di forza, accanto ad alcuni ulteriori miglioramenti previsti per incrementarne le prestazioni complessive. I test di stabilità statica hanno dimostrato che il veicolo può resistere a ripidi pendii. Sono stati inoltre studiati miglioramenti per affinare la stima dello slittamento che si verifica durante le manovre di svolta, tipico dei veicoli cingolati. L'architettura software è stata implementata utilizzando il framework Robot Operating System (ROS), in modo da sfruttare i pacchetti disponibili relativi a componenti base, come le interfacce dei sensori, e consentendo al contempo un'implementazione personalizzata degli algoritmi di navigazione sviluppati. I test in condizioni reali all'interno dei frutteti sperimentali dell'università hanno dimostrato la robustezza e la stabilità della soluzione con oltre 800 ore di lavoro sul campo. Il veicolo ha permesso di attivare e svolgere un'ampia gamma di attività agricole in maniera autonoma, come l'irrorazione, la falciatura e la raccolta di dati sul campo. Questi ultimi possono essere sfruttati per stimare automaticamente le proprietà più rilevanti del frutteto, come il conteggio e la calibratura dei frutti, la stima delle proprietà della chioma e la raccolta autonoma dei frutti con stime post-raccolta

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Differential infrared thermography for rotor aerodynamics

    Get PDF
    Understanding the flow around helicopter rotors is one of the greatest challenges in modern aerodynamics. The flow field plays a key role in the rotorcraft performance and operational safety, and it is characterized by highly unsteady and three-dimensional phenomena. State-of-the-art computational fluid dynamics (CFD) is applied during the design of future rotorcraft and offers remarkable capabilities, including the simulation of entire helicopter configurations in maneuvering flight. Nevertheless, experiments are still essential for the understanding of complex flow regimes, and for the validation of numerical results. An ever-increasing level of detail in CFD studies motivates the development and refinement of experimental methods, and combined experimental-numerical efforts have been particularly rewarding in recent studies. Starting with early rotorcraft-specific research topics, for example the systematic characterization of pitch-oscillating airfoils in the 1960s, experimental techniques have undergone continuous improvement. This particularly holds true for optical methods, which have developed from providing qualitative and “simple” snapshots of the flow into quantitative and time-resolving diagnostic tools. Optical methods require few modifications of the rotor or rotorcraft under investigation. They are particularly suitable for an application on multiple scales, ranging from small-scale laboratory studies to full-scale free-flying helicopters. This thesis concentrates on the development, validation, and application of the differential infrared thermography (DIT). The DIT method is able to determine the moving position of the laminar-turbulent boundary layer transition, which is a relevant aerodynamic feature on rotor blades, accounting for the unsteadiness introduced by the different inflow conditions on the advancing and retreating sides of the trimmed rotor plane in forward flight. Additional helicopter-relevant applications include the study of pitch-oscillating airfoils or small-scaled rotors in laboratory or wind-tunnel environments. Furthermore, it will be shown that the DIT principle can be adapted to other rotor-relevant topics beyond transition research, such as dynamic stall investigations. DIT is a valuable addition to the larger family of optical measurement techniques for aerodynamic applications
    • …
    corecore