948 research outputs found

    Sliding Mode Control of Buck Converter

    Full text link
    DC-DC converters are used to convert DC voltage from one level to other. These converters are drastically used in industry as well as in research. One of the main limitations of these converters is unregulated supply of voltage and current. To overcome these problems there are various control techniques. This paper presents two such methods. This paper compares dynamic performance of buck Converter using PID controller and Sliding mode controller. Simulation of PI and Sliding mode control of Buck Converter is carried out in MATLAB SIMULINK

    Sliding Mode Control of Buck Converter

    Get PDF
    DC-DC converters are used to convert DC voltage from one level to other. These converters are drastically used in industry as well as in research. One of the main limitations of these converters is unregulated supply of voltage and current. To overcome these problems there are various control techniques. This paper presents two such methods. This paper compares dynamic performance of buck Converter using PID controller and Sliding mode controller. Simulation of PI and Sliding mode control of Buck Converter is carried out in MATLAB SIMULINK

    Comparative Analysis of Different Control Schemes for DC-DC Converter: a Review

    Full text link
    DC-DC converters are some power electronic circuits that convert the DC voltage from one level to another. They have a very large area of applications ranging from computing to communication. They are widely used in appliance control transportations and high-power transmission. Its increasing demand is based on its capability of electrical energy conversion. The basic topologies of DC-DC converter are Buck converter and Boost converter, other topologies are derived from these two basic topologies. Mathematical modelling of both Buck converters is done. Some of the control schemes are summarized in this paper. Current mode control (CMC), PID, Sliding Mode (SM) control including their advantages and disadvantages are highlighted in this paper

    Comparative Analysis of Different Control Schemes for DC-DC Converter: A Review

    Get PDF
    DC-DC converters are some power electronic circuits that convert the DC voltage from one level to another. They have a very large area of applications ranging from computing to communication. They are widely used in appliance control transportations and high-power transmission. Its increasing demand is based on its capability of electrical energy conversion. The basic topologies of DC-DC converter are Buck converter and Boost converter, other topologies are derived from these two basic topologies. Mathematical modelling of both Buck converters is done. Some of the control schemes are summarized in this paper. Current mode control (CMC), PID, Sliding Mode (SM) control including their advantages and disadvantages are highlighted in this paper

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Sliding Mode Control for Industrial Controllers

    Get PDF

    Study of a High-Efficient Wide-Bandgap DC-DC Power Converter for Solar Power Integration

    Get PDF
    This research focuses on the design and analysis of a Boost cascaded Buck-Boost (BoCBB) power converter with super high efficiency in electric power conversion. The BoCBB power converter is based on emerging wide-bandgap silicon-carbide (SiC) MOSFETs and Schottky diodes, which have only 1/6 times of power loss in traditional silicon power semiconductor devices. The BoCBB power converter can be widely applied in solar harvesting for the National Aeronautics and Space Administration (NASA), military bases and electric utilities, as well as high-power DC motor drives for the electric vehicles, robotics, and manufacturing and product lines. This research analyzed the topology and energy efficiency of a 3-kW BoCBB power converter. The energy efficiency of the SiC-based BoCBB power converter was calculated under various switching frequencies (20-kHz – 100-kHz) and was first tested by a simulation study of solar power integration in a 400-Vdc distribution microgrid in Matlab/Simulink environment. The design of 50-kHz in switching frequency revealed to be optimal in overall system performance. This conclusion was further verified by experimental tests. The experimental tests demonstrated a high efficiency of above 97% in power conversion. In order to improve the power quality of the BoCBB power converter for time-varying solar radiation, a novel sliding-window-combined (SWC) hysteresis control technique was proposed and preliminarily verified by a simulation study to enhance transients of a power grid

    A short predictive Model Predictive Control (MPC) approach for hybrid characteristics analysis in DC-DC converter

    Get PDF
    Historically, the MPC has been successfully applied in drives system for over a decade. Furthermore, the DC-DC converter naturally deals with high switching phenomenon that contributes to the challenging in control approach. Its operation conventionally associated with PI/PID controller in order to meet the desired output. However, the PI/PID controller lacking in getting a good transient response since this controller highly depends on the controller gains. Recently, an advanced controller has been proposed in the literature for the purpose to enhance the DC-DC converter performance. Hence, in this thesis, the short prediction horizon of MPC using search tree optimization that generates low switching states phenomenon is proposed. The MPC algorithm is developed based on the hybrid characteristic signals from the DC-DC converter. The load changes due to the increasing or decreasing the loads (could be happened of heating effect) will affect the tracking of the output voltage. The Kalman Filter (KF) is used for load estimation for smoothing and tracking the output voltage. The performance of short prediction horizons is being compared to PI controller in terms of transient response during the start-up scenario. The results show that the proposed controller has a better response than PI controller, which is the overshoot has been reduced to more than 50% and the settling time more faster about 25% than PI controller during start-up scenario. Therefore, this control approach for DC-DC buck converter has produced the promising output transient performance when compared with the conventional PI controller while also minimizing the switching sequence phenomenon

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    Sliding mode control of reaction flywheel-based brushless DC motor with buck converter

    Get PDF
    AbstractReaction flywheel is a significant actuator for satellites’ attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC–DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities
    • …
    corecore