42,751 research outputs found

    Parallelizing Windowed Stream Joins in a Shared-Nothing Cluster

    Full text link
    The availability of large number of processing nodes in a parallel and distributed computing environment enables sophisticated real time processing over high speed data streams, as required by many emerging applications. Sliding window stream joins are among the most important operators in a stream processing system. In this paper, we consider the issue of parallelizing a sliding window stream join operator over a shared nothing cluster. We propose a framework, based on fixed or predefined communication pattern, to distribute the join processing loads over the shared-nothing cluster. We consider various overheads while scaling over a large number of nodes, and propose solution methodologies to cope with the issues. We implement the algorithm over a cluster using a message passing system, and present the experimental results showing the effectiveness of the join processing algorithm.Comment: 11 page

    Efficient Action Detection in Untrimmed Videos via Multi-Task Learning

    Full text link
    This paper studies the joint learning of action recognition and temporal localization in long, untrimmed videos. We employ a multi-task learning framework that performs the three highly related steps of action proposal, action recognition, and action localization refinement in parallel instead of the standard sequential pipeline that performs the steps in order. We develop a novel temporal actionness regression module that estimates what proportion of a clip contains action. We use it for temporal localization but it could have other applications like video retrieval, surveillance, summarization, etc. We also introduce random shear augmentation during training to simulate viewpoint change. We evaluate our framework on three popular video benchmarks. Results demonstrate that our joint model is efficient in terms of storage and computation in that we do not need to compute and cache dense trajectory features, and that it is several times faster than its sequential ConvNets counterpart. Yet, despite being more efficient, it outperforms state-of-the-art methods with respect to accuracy.Comment: WACV 2017 camera ready, minor updates about test time efficienc

    Exploring sensor data management

    Get PDF
    The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired and wireless networks has led to the prediction that `smart evironments' will emerge in the near future. The sensors in these environments collect detailed information about the situation people are in, which is used to enhance information-processing applications that are present on their mobile and `ambient' devices.\ud \ud Bridging the gap between sensor data and application information poses new requirements to data management. This report discusses what these requirements are and documents ongoing research that explores ways of thinking about data management suited to these new requirements: a more sophisticated control flow model, data models that incorporate time, and ways to deal with the uncertainty in sensor data

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437
    • …
    corecore