4,390 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    Get PDF

    Development and Evaluation of an Integral Sliding Mode Fault Tolerant Control Scheme on the RECONFIGURE Benchmark

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper describes the development, application and evaluation of a linear parameter-varying integral sliding mode control allocation scheme to the RECONFIGURE benchmark model to deal with an actuator failure/fault scenario. The proposed scheme has the capability to maintain close to nominal (fault free) load factor control performance in the face of elevator failures/faults, by including a retro-fitted integral sliding mode term and then re-routing (via control allocation) the augmented control signal to healthy elevators without reconfiguring the baseline controller. In order to mitigate any chattering appearing in the elevator demands, the retro-fitted signal is based on a super-twisting sliding mode structure. This produces a control signal which is continuous and does not have the discontinuous switching nature of traditional sliding mode schemes. The scheme is evaluated using an industrial Functional Engineering Simulator developed as part of the RECONFIGURE project. Monte-Carlo campaign results are shown to demonstrate the performance of the proposed scheme.The work in this paper is supported by EU-FP7 Grant (FP7-AAT-2012-314544): RECONFIGUR

    Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction

    Get PDF
    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly affects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms

    Switching control systems and their design automation via genetic algorithms

    Get PDF
    The objective of this work is to provide a simple and effective nonlinear controller. Our strategy involves switching the underlying strategies in order to maintain a robust control. If a disturbance moves the system outside the region of stability or the domain of attraction, it will be guided back onto the desired course by the application of a different control strategy. In the context of switching control, the common types of controller present in the literature are based either on fuzzy logic or sliding mode. Both of them are easy to implement and provide efficient control for non-linear systems, their actions being based on the observed input/output behaviour of the system. In the field of fuzzy logic control (FLC) using error feedback variables there are two main problems. The first is the poor transient response (jerking) encountered by the conventional 2-dimensional rule-base fuzzy PI controller. Secondly, conventional 3-D rule-base fuzzy PID control design is both computationally intensive and suffers from prolonged design times caused by a large dimensional rule-base. The size of the rule base will increase exponentially with the increase of the number of fuzzy sets used for each input decision variable. Hence, a reduced rule-base is needed for the 3-term fuzzy controller. In this thesis a direct implementation method is developed that allows the size of the rule-base to be reduced exponentially without losing the features of the PID structure. This direct implementation method, when applied to the reduced rule-base fuzzy PI controller, gives a good transient response with no jerking

    The strengthening of Islamic values on students through the metaphor of accepting death: an Indonesian perception

    Get PDF
    Death is a sure entity for every human that cannot be avoided in human life. The purpose of this research was to reveal that the usage of metaphor technique called, “The Acceptance of Death” in group counselling can improve Islamic values on Muslim students. This study employed an action research using The Kemmis Model with the stages of planning, action, observation, and reflection. This research implemented group counselling with metaphor technique of accepting death by students. The research subjects were 20 female students of State Islamic University of Sultan Syarif Kasim Riau who lived in the campus dormitory. The selection of the research subjects was done randomly by choosing the female students who were willing to join the group counselling activity. The research results showed that the practice of metaphor technique of “The Acceptance of Death” in the group counselling can strengthen the Islamic values and their characteristics as Muslims. They understand their previous mistakes and are willing to be better for the sake of their life. They have the commitment to become the best students and the best Muslims

    An Enhanced Sliding Mode Speed Control for Induction Motor Drives

    Get PDF
    In this paper, an enhanced Integral Sliding Mode Control (ISMC) for mechanical speed of an Induction Motor (IM) is presented and experimentally validated. The design of the proposed controller has been done in the d-q synchronous reference frame and indirect Field Oriented Control (FOC). Global asymptotic speed tracking in the presence of model uncertainties and load torque variations has been guaranteed by using an enhanced ISMC surface. Moreover, this controller provides a faster speed convergence rate compared to the conventional ISMC and the Proportional Integral methods, and it eliminates the steady-state error. Furthermore, the chattering phenomenon is reduced by using a switching sigmoid function. The stability of the proposed controller under parameter uncertainties and load disturbances has been provided by using the Lyapunov stability theory. Finally, the performance of this control method is verified through numerical simulations and experimental tests, getting fast dynamics and good robustness for IM drives.The University of the Basque Country (UPV/EHU) [grant number PIF 18/127] has funded the research in this pape
    corecore