1,478 research outputs found

    Sliding mode controller for robust force control o hydraulic actuator with environmental uncertainties

    Get PDF
    In this paper, a reduced order linear model is selected to describe the hydraulic servo-actuator with large environmental uncertainties. The exploitation in simulation of the perturbed 5th order linear model is enough for the first approach, that is to say, before experimentation to value the studied law control potential. Because its robust character and superior performance in environmental uncertainties, a sliding mode controller, based on the so called equivalent control and robust control components is designed for control of the output force to track asymptotically the desired trajectory with no chattering problems. A comparison with H-infinity controller shows that the proposed sliding mode controller is robustly performant.Keywords : Sliding mode control, hydraulic Servo-Actuator, output tracking

    Acceleration-based fault-tolerant control design of offshore fixed wind turbines

    Get PDF
    Wind turbines (WTs) are basically controlled by varying the generator load torque (with the so-called torque control) and the blade pitch angles (with the so-called pitch control) based on measurement of the generator shaft speed. These two controllers unitedly work to satisfy the control objectives, and it is crucial that they are tolerant to possible faults in the WT system. Passive fault-tolerant control comprises the design of robust controllers against disturbances and uncertainties. This enables the controller to counteract the effect of a fault without requiring reconfiguration or fault detection. In this regard, the main contribution of this paper is to propose new control techniques that not only provide fault tolerance capabilities to the WT system but also improve the overall performance of the system in both fault-free and faulty conditions. Coupling nonlinear aero-hydro-servo-elastic simulations of an offshore WT with jacket platform is carried out for several pitch actuator faults. The jacket platform motions and structural loads caused by fault events with the proposed controllers are compared with loads encountered during normal operation and with respect to a well-known baseline controller in the literature. The proposed controllers are based in the super-twisting algorithm by using feedback of the generator shaft speed as well as the fore-aft and side-to-side acceleration signals of the WT tower.Preprin

    Pressure-based Impedance Control of A Pneumatic Actuator

    Get PDF
    In this thesis, three control methods are developed for the impedance control of a linear pneumatic actuator for contact tasks using discrete valves. Linear pneumatic actuators, particularly with discrete valves, utilize compressed air to produce linear motion. It is a low cost and clean system with straightforward implementation compared to other actuators. Impedance control is applied to the pneumatic actuator to regulate not only force and position, but also the relationship between them. Specifically, the impedance control yields a desired air pressure based on the actual and desired positions, velocity, and force of a pneumatic cylinder to drive the dynamics of the actuator system. Three controllers including Active Disturbance Rejection Control (ADRC), Sliding Mode Control (SMC), and Extended State Observer (ESO) based SMC are implemented to control the pressure output of the actuator system. The control goal is to drive the actual pressure output to the desired pressure from the impedance control module despite the presence of parameter variations and external disturbances. The performances of these controllers are compared based on their abilities of regulating position, force, and pressure in contact and non-contact situations, as well as the amount of control efforts that excite the valve to achieve these goals. Simulation results demonstrate that ADRC provides the best solution to accomplish the control goals in terms of accurate tracking of position, effectively regulating impedance in the presence of an object, and requiring the least amount of control effort necessary to excite valves

    Active suspension control of electric vehicle with in-wheel motors

    Get PDF
    In-wheel motor (IWM) technology has attracted increasing research interests in recent years due to the numerous advantages it offers. However, the direct attachment of IWMs to the wheels can result in an increase in the vehicle unsprung mass and a significant drop in the suspension ride comfort performance and road holding stability. Other issues such as motor bearing wear motor vibration, air-gap eccentricity and residual unbalanced radial force can adversely influence the motor vibration, passenger comfort and vehicle rollover stability. Active suspension and optimized passive suspension are possible methods deployed to improve the ride comfort and safety of electric vehicles equipped with inwheel motor. The trade-off between ride comfort and handling stability is a major challenge in active suspension design. This thesis investigates the development of novel active suspension systems for successful implementation of IWM technology in electric cars. Towards such aim, several active suspension methods based on robust H∞ control methods are developed to achieve enhanced suspension performance by overcoming the conflicting requirement between ride comfort, suspension deflection and road holding. A novel fault-tolerant H∞ controller based on friction compensation is in the presence of system parameter uncertainties, actuator faults, as well as actuator time delay and system friction is proposed. A friction observer-based Takagi-Sugeno (T-S) fuzzy H∞ controller is developed for active suspension with sprung mass variation and system friction. This method is validated experimentally on a quarter car test rig. The experimental results demonstrate the effectiveness of proposed control methods in improving vehicle ride performance and road holding capability under different road profiles. Quarter car suspension model with suspended shaft-less direct-drive motors has the potential to improve the road holding capability and ride performance. Based on the quarter car suspension with dynamic vibration absorber (DVA) model, a multi-objective parameter optimization for active suspension of IWM mounted electric vehicle based on genetic algorithm (GA) is proposed to suppress the sprung mass vibration, motor vibration, motor bearing wear as well as improving ride comfort, suspension deflection and road holding stability. Then a fault-tolerant fuzzy H∞ control design approach for active suspension of IWM driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The T-S fuzzy suspension model is used to cope with the possible sprung mass variation. The output feedback control problem for active suspension system of IWM driven electric vehicles with actuator faults and time delay is further investigated. The suspended motor parameters and vehicle suspension parameters are optimized based on the particle swarm optimization. A robust output feedback H∞ controller is designed to guarantee the system’s asymptotic stability and simultaneously satisfying the performance constraints. The proposed output feedback controller reveals much better performance than previous work when different actuator thrust losses and time delay occurs. The road surface roughness is coupled with in-wheel switched reluctance motor air-gap eccentricity and the unbalanced residual vertical force. Coupling effects between road excitation and in wheel switched reluctance motor (SRM) on electric vehicle ride comfort are also analysed in this thesis. A hybrid control method including output feedback controller and SRM controller are designed to suppress SRM vibration and to prolong the SRM lifespan, while at the same time improving vehicle ride comfort. Then a state feedback H∞ controller combined with SRM controller is designed for in-wheel SRM driven electric vehicle with DVA structure to enhance vehicle and SRM performance. Simulation results demonstrate the effectiveness of DVA structure based active suspension system with proposed control method its ability to significantly improve the road holding capability and ride performance, as well as motor performance

    Adaptive vibration control of a nonlinear quarter car model with an electromagnetic active suspension

    Get PDF
    The main goal of the active suspension system used in a vehicle is reducing the vehicle vibration. In this study, an adaptive control approach is applied to a nonlinear quarter car model with an active suspension system. An electromagnetic actuator is used in the active suspension system. The attractive aspect of the applied control method is not required to both vehicle parameters and actuator parameters. Using Lyapunov based stability analysis; it is shown that all the signals in the closed loop system are bounded. Hence, the applied controller ensures the vibration reduction of the nonlinear quarter car model. The simulation results show that the applied adaptive controller provide a good ride comfort despite the parametric uncertainties while keeping suspension travel and tire deflection in acceptable limits

    Sliding Mode Thermal Control System for Space Station Furnace Facility

    Get PDF
    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems

    An Active Disturbance Rejection Control Solution for Electro-Hydraulic Servo Systems

    Get PDF
    The intriguing history of disturbance cancellation control is reviewed in this thesis first, which demonstrates that this unique control concept is both reasonable and practical. One novel form of disturbance cancellation, ADRC (Active Disturbance Rejection Control), attracts much attention because of its good disturbance rejection ability and simplicity in implementation. Hydraulic systems tend to have many disturbances and model uncertainties, giving us a great motivation to find out a good control method. In this thesis, electro-hydraulic servo control problem is reformulated to focus on the core problem of disturbance rejection. An ADRC solution is developed and evaluated against the industry standard solution, with promising result

    Interdisciplinary design methodology for systems of mechatronic systems focus on highly dynamic environmental applications

    Get PDF
    This paper discusses a series of research challenges in the design of systems of mechatronic systems. A focus is given to environmental mechatronic applications within the chain “Renewable energy production - Smart grids - Electric vehicles”. For the considered mechatronic systems, the main design targets are formulated, the relations to state and parameter estimation, disturbance observation and rejection as well as control algorithms are highlighted. Finally, the study introduces an interdisciplinary design approach based on the intersectoral transfer of knowledge and collaborative experimental activities

    Wind turbine synchronous reset pitch control

    Get PDF
    Reset controllers are commonly used to smooth the transient response of systems. We use this technique to improve a standard baseline pitch controller for offshore wind turbines (WTs). The introduction of this strategy enhances the overall performance of the WT. In particular, the fore-aft and side-to-side accelerations of the WT tower are significantly reduced, whilst a steadier power output is obtained, in comparison to the standard baseline pitch controller. Furthermore, our designed pitch control’s main advantage, with respect to the baseline, is its ease of implementation and reduced complexity as it does not require a gain-scheduling technique, nor pitch position measurement (thus, it is insensitive to pitch sensor faults). The proposed approach has been simulated on the NREL 5-MW prototype offshore turbine model, mounted on a jacket support. The simulations are carried out using the aero-hydro-servo-elastic simulator FAST, and key observations are thoroughly discussed.Peer ReviewedPostprint (published version
    corecore