5,048 research outputs found

    Some issues in the sliding mode control of rigid robotic manipulators

    Get PDF
    This thesis investigates the problem of robust adaptive sliding mode control for nonlinear rigid robotic manipulators. A number of robustness and convergence results are presented for sliding mode control of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The highlights of the research work are summarized below : • A robust adaptive tracking control for rigid robotic manipulators is proposed. In this scheme, the parameters of the upper bound of system uncertainty are adaptively estimated. The controller estimates are then used as controller parameters to eliminate the effects of system uncertainty and guarantee asymptotic error convergence. • A decentralised adaptive sliding mode control scheme for rigid robotic manipulators is proposed. The known dynamics of the partially known robotic manipulator are separated out to perform linearization. A local feedback controller is then designed to stabilize each subsystem and an adaptive sliding mode compensator is used to handle the effects of uncertain system dynamics. The developed scheme guarantees that the effects of system dynamics are eliminated and that asymptotic error convergence is obtained with respect to the overall robotic control system. • A model reference adaptive control using the terminal sliding mode technique is proposed. A multivariable terminal sliding mode is defined for a model following control system for rigid robotic manipulators. A terminal sliding mode controller is then designed based on only a few uncertain system matrix bounds. The result is a simple and robust controller design that guarantees convergence of the output tracking error in a finite time on the terminal sliding mode

    Sensor Fault Detection and Compensation with Performance Prescription for Robotic Manipulators

    Full text link
    This paper focuses on sensor fault detection and compensation for robotic manipulators. The proposed method features a new adaptive observer and a new terminal sliding mode control law established on a second-order integral sliding surface. The method enables sensor fault detection without the need to impose known bounds on fault value and/or its derivative. It also enables fast and fixed-time fault-tolerant control whose performance can be prescribed beforehand by defining funnel bounds on the tracking error. The ultimate boundedness of the estimation errors for the proposed observer and the fixed-time stability of the control system are shown using Lyapunov stability analysis. The effectiveness of the proposed method is verified using numerical simulations on two different robotic manipulators, and the results are compared with existing methods. Our results demonstrate performance gains obtained by the proposed method compared to the existing results

    Terminal sliding mode control for rigid robotic manipulators with uncertain dynamics

    Get PDF
    This thesis presents two new adaptive control laws that use the terminal sliding mode technique for the tracking problem of rigid robotic manipulators with non-linearities, dynamic couplings and uncertain parameters. The first law provides a robust scheme which uses several properties of rigid robotic mauipulators and adaptively adjusts seven uncertain parameter bounds. The law ensures finite time error convergence to the system origin and is simple to implement The second law treats the manipulator as a partially known system. The known dynamics are used to build a nominal control law and the effects of unknown system dynamics arc compensated for by use of a sliding mode compensator. The resulting control law is robust, asymptotically convergent, has finite time convergence to the sliding mode and allows for bounded external disturbances. It is easy to implement and requires no bounds on system parameters, adaptively adjusting only three bounds on system uncertainties. Both laws are extended to include a reduction of chattering by use of the boundary layer technique. They are tested via application to a two-link robot simulated using MatLab

    Robust decentralised variable structure control for rigid robotic manipulators

    Get PDF
    In this thesis, the problem of robust variable structure control for non-linear rigid robotic manipulators is investigated. Robustness and convergence results are presented for variable structure control systems of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The major outcomes of the work described in this thesis are summarised as given below. The basic variable structure theory is surveyed, and some basic ideas such as sliding mode designs, robustness analysis and control1er design methods for linear or non-linear systems are reviewed. Three recent variable structure control schemes for robotic manipulators are discussed and compared to highlight the research developments in this area. A decentralised variable structure model reference adaptive control scheme is proposed for a class of large scale systems. It is shown that, unlike previous decentralised variable structure control schemes, the local variable structure controller design in this scheme requires only three bounds of the subsystem matrices and dynamical interactions instead of the upper and the lower bounds of all unknown subsystem parameters. Using this scheme, not only asymptotic convergence of the output tracking error can be guaranteed, but also the controller design is greatly simplified. In order to eliminate chattering caused by the variable structure technique, local boundary layer controllers are presented. Furthermore, the scheme is applied to the tracking control of robotic manipulators with the result that strong robustness and asymptotic convergence of the output tracking error are obtained

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator

    Sliding mode robot control with friction and payload estimation

    Get PDF
    The paper deals with robust motion control of robotic systems with unknown friction parameters and payload mass. The parameters of the robot arm were considered known with a given precision. To solve the control of the robot with unknown payload mass and friction parameters, sliding mode control algorithm was proposed combined with robust parameter adaptation techniques. Using Lyapunov method it was shown that the resulting controller achieves a guaranteed final tracking accuracy. Simulation results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme
    • …
    corecore