8,989 research outputs found

    Slicing for architectural analysis

    Get PDF
    Current software development often relies on non trivial coordination logic for combining autonomous services, eventually running on different platforms. As a rule, however, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identification becomes a major methodological (and technical) problem and a challenge to any program understanding or refactoring process. The approach introduced in this paper resorts to slicing techniques to extract coordination data from source code. Such data is captured in a specific dependency graph structure from which a coordination model can be recovered either in the form of an Orc specification or as a collection of code fragments corresponding to the identification of typical coordination patterns in the system. Tool support is also discussed.Fundação para a Ciência e a Tecnologia (FCT) - projeto Mondrian, PTDC/EIA-CCO/108302/200

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    Session Communication and Integration

    Get PDF
    The scenario-based specification of a large distributed system is usually naturally decomposed into various modules. The integration of specification modules contrasts to the parallel composition of program components, and includes various ways such as scenario concatenation, choice, and nesting. The recent development of multiparty session types for process calculi provides useful techniques to accommodate the protocol modularisation, by encoding fragments of communication protocols in the usage of private channels for a class of agents. In this paper, we extend forgoing session type theories by enhancing the session integration mechanism. More specifically, we propose a novel synchronous multiparty session type theory, in which sessions are separated into the communicating and integrating levels. Communicating sessions record the message-based communications between multiple agents, whilst integrating sessions describe the integration of communicating ones. A two-level session type system is developed for pi-calculus with syntactic primitives for session establishment, and several key properties of the type system are studied. Applying the theory to system description, we show that a channel safety property and a session conformance property can be analysed. Also, to improve the utility of the theory, a process slicing method is used to help identify the violated sessions in the type checking.Comment: A short version of this paper is submitted for revie
    corecore