2,682 research outputs found

    Engineering Multi-Agent Systems: State of Affairs and the Road Ahead

    Get PDF
    The continuous integration of software-intensive systems together with the ever-increasing computing power offer a breeding ground for intelligent agents and multi-agent systems (MAS) more than ever before. Over the past two decades, a wide variety of languages, models, techniques and methodologies have been proposed to engineer agents and MAS. Despite this substantial body of knowledge and expertise, the systematic engineering of large-scale and open MAS still poses many challenges. Researchers and engineers still face fundamental questions regarding theories, architectures, languages, processes, and platforms for designing, implementing, running, maintaining, and evolving MAS. This paper reports on the results of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July, 2018, Stockholm, Sweden), where participants discussed the issues above focusing on the state of affairs and the road ahead for researchers and engineers in this area

    Acta Cybernetica : Volume 20. Number 4.

    Get PDF

    Dynamic Slicing by On-demand Re-execution

    Full text link
    In this paper, we propose a novel approach that aims to offer an alternative to the prevalent paradigm to dynamic slicing construction. Dynamic slicing requires dynamic data and control dependencies that arise in an execution. During a single execution, memory reference information is recorded and then traversed to extract dependencies. Execute-once approaches and tools are challenged even by executions of moderate size of simple and short programs. We propose to shift practical time complexity from execution size to slice size. In particular, our approach executes the program multiple times while tracking targeted information at each execution. We present a concrete algorithm that follows an on-demand re-execution paradigm that uses a novel concept of frontier dependency to incrementally build a dynamic slice. To focus dependency tracking, the algorithm relies on static analysis. We show results of an evaluation on the SV-COMP benchmark and Antrl4 unit tests that provide evidence that on-demand re-execution can provide performance gains particularly when slice size is small and execution size is large

    Session Communication and Integration

    Get PDF
    The scenario-based specification of a large distributed system is usually naturally decomposed into various modules. The integration of specification modules contrasts to the parallel composition of program components, and includes various ways such as scenario concatenation, choice, and nesting. The recent development of multiparty session types for process calculi provides useful techniques to accommodate the protocol modularisation, by encoding fragments of communication protocols in the usage of private channels for a class of agents. In this paper, we extend forgoing session type theories by enhancing the session integration mechanism. More specifically, we propose a novel synchronous multiparty session type theory, in which sessions are separated into the communicating and integrating levels. Communicating sessions record the message-based communications between multiple agents, whilst integrating sessions describe the integration of communicating ones. A two-level session type system is developed for pi-calculus with syntactic primitives for session establishment, and several key properties of the type system are studied. Applying the theory to system description, we show that a channel safety property and a session conformance property can be analysed. Also, to improve the utility of the theory, a process slicing method is used to help identify the violated sessions in the type checking.Comment: A short version of this paper is submitted for revie

    The 7th Conference of PhD Students in Computer Science

    Get PDF
    corecore