4,171 research outputs found

    Efficient Model Checking of Hardware Using Conditioned Slicing

    Get PDF
    AbstractIn this work, we present an abstraction based property verification technique for hardware using conditioned slicing. We handle safety property specifications of the form G(antecedent⇒consequent). We use the antecedent of the properties to create our abstractions, Antecedent Conditioned Slices. We extend conditioned slicing to Hardware Description Languages (HDLs). We provide a theoretical foundation for our conditioned slicing based verification technique. We also present experimental results on the Verilog RTL implementation of the USB 2.0. We demonstrate very high performance gains achieved by our technique when compared to static program slicing, using state-of-the-art model checkers

    Identifying reusable functions in code using specification driven techniques

    Get PDF
    The work described in this thesis addresses the field of software reuse. Software reuse is widely considered as a way to increase the productivity and improve the quality and reliability of new software systems. Identifying, extracting and reengineering software. components which implement abstractions within existing systems is a promising cost-effective way to create reusable assets. Such a process is referred to as reuse reengineering. A reference paradigm has been defined within the RE(^2) project which decomposes a reuse reengineering process in five sequential phases. In particular, the first phase of the reference paradigm, called Candidature phase, is concerned with the analysis of source code for the identification of software components implementing abstractions and which are therefore candidate to be reused. Different candidature criteria exist for the identification of reuse-candidate software components. They can be classified in structural methods (based on structural properties of the software) and specification driven methods (that search for software components implementing a given specification).In this thesis a new specification driven candidature criterion for the identification and the extraction of code fragments implementing functional abstractions is presented. The method is driven by a formal specification of the function to be isolated (given in terms of a precondition and a post condition) and is based on the theoretical frameworks of program slicing and symbolic execution. Symbolic execution and theorem proving techniques are used to map the specification of the functional abstractions onto a slicing criterion. Once the slicing criterion has been identified the slice is isolated using algorithms based on dependence graphs. The method has been specialised for programs written in the C language. Both symbolic execution and program slicing are performed by exploiting the Combined C Graph (CCG), a fine-grained dependence based program representation that can be used for several software maintenance tasks

    Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing

    Get PDF
    In the present paper we formally define the notion of abstract program slicing, a general form of program slicing where properties of data are considered instead of their exact value. This approach is applied to a language with numeric and reference values, and relies on the notion of abstract dependencies between program components (statements). The different forms of (backward) abstract slicing are added to an existing formal framework where traditional, non-abstract forms of slicing could be compared. The extended framework allows us to appreciate that abstract slicing is a generalization of traditional slicing, since traditional slicing (dealing with syntactic dependencies) is generalized by (semantic) non-abstract forms of slicing, which are actually equivalent to an abstract form where the identity abstraction is performed on data. Sound algorithms for computing abstract dependencies and a systematic characterization of program slices are provided, which rely on the notion of agreement between program states

    Security Analysis of Role-based Access Control through Program Verification

    No full text
    We propose a novel scheme for proving administrative role-based access control (ARBAC) policies correct with respect to security properties using the powerful abstraction based tools available for program verification. Our scheme uses a combination of abstraction and reduction to program verification to perform security analysis. We convert ARBAC policies to imperative programs that simulate the policy abstractly, and then utilize further abstract-interpretation techniques from program analysis to analyze the programs in order to prove the policies secure. We argue that the aggressive set-abstractions and numerical-abstractions we use are natural and appropriate in the access control setting. We implement our scheme using a tool called VAC that translates ARBAC policies to imperative programs followed by an interval-based static analysis of the program, and show that we can effectively prove access control policies correct. The salient feature of our approach are the abstraction schemes we develop and the reduction of role-based access control security (which has nothing to do with programs) to program verification problems

    Handling Parallelism in a Concurrency Model

    Full text link
    Programming models for concurrency are optimized for dealing with nondeterminism, for example to handle asynchronously arriving events. To shield the developer from data race errors effectively, such models may prevent shared access to data altogether. However, this restriction also makes them unsuitable for applications that require data parallelism. We present a library-based approach for permitting parallel access to arrays while preserving the safety guarantees of the original model. When applied to SCOOP, an object-oriented concurrency model, the approach exhibits a negligible performance overhead compared to ordinary threaded implementations of two parallel benchmark programs.Comment: MUSEPAT 201

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie
    corecore