23 research outputs found

    A Utility-Driven Multi-Queue Admission Control Solution for Network Slicing

    Get PDF
    38th IEEE International Conference on Computer Communications (IEEE INFOCOM 2019)The combination of recent emerging technologies such as network function virtualization (NFV) and network programmability (SDN) gave birth to the Network Slicing revolution. 5G networks consist of multi-tenant infrastructures capable of offering leased network “slices” to new customers (e.g., vertical industries) enabling a new telecom business model: Slice-as-a-Service (SlaaS). In this paper, we aim i) to study the slicing admission control problem by means of a multi-queuing system for heterogeneous tenant requests, ii) to derive its statistical behavior model, and iii) to provide a utility-based admission control optimization. Our results analyze the capability of the proposed SlaaS system to be approximately Markovian and evaluate its performance as compared to legacy solutions.This work has been partially funded by the European Union Horizon-2020 Projects 5G-MoNArch and 5G-Transformer under Grant Agreements 761445 and 761536 as well as by the Network for the Promotion of Young Scientists (TU-Nachwuchsring), TU Kaiserslautern with individual funding

    Enhancing Network Slicing Architectures with Machine Learning, Security, Sustainability and Experimental Networks Integration

    Full text link
    Network Slicing (NS) is an essential technique extensively used in 5G networks computing strategies, mobile edge computing, mobile cloud computing, and verticals like the Internet of Vehicles and industrial IoT, among others. NS is foreseen as one of the leading enablers for 6G futuristic and highly demanding applications since it allows the optimization and customization of scarce and disputed resources among dynamic, demanding clients with highly distinct application requirements. Various standardization organizations, like 3GPP's proposal for new generation networks and state-of-the-art 5G/6G research projects, are proposing new NS architectures. However, new NS architectures have to deal with an extensive range of requirements that inherently result in having NS architecture proposals typically fulfilling the needs of specific sets of domains with commonalities. The Slicing Future Internet Infrastructures (SFI2) architecture proposal explores the gap resulting from the diversity of NS architectures target domains by proposing a new NS reference architecture with a defined focus on integrating experimental networks and enhancing the NS architecture with Machine Learning (ML) native optimizations, energy-efficient slicing, and slicing-tailored security functionalities. The SFI2 architectural main contribution includes the utilization of the slice-as-a-service paradigm for end-to-end orchestration of resources across multi-domains and multi-technology experimental networks. In addition, the SFI2 reference architecture instantiations will enhance the multi-domain and multi-technology integrated experimental network deployment with native ML optimization, energy-efficient aware slicing, and slicing-tailored security functionalities for the practical domain.Comment: 10 pages, 11 figure

    Slicing and Allocation of Transformable Resources for the Deployment of Multiple Virtualized Infrastructure Managers (VIMs)

    Get PDF
    In the context of 5G networks, the concept of network slicing allows network providers to flexibly share infrastructures with mobile service providers and verticals. While this concept has been widely investigated considering mostly the network issues, in this work we focus on a slice as a service model that takes into account the data center (DC) perspective. In particular, we propose an architecture where DC slices are created over transformable (compute and storage) resources, which can be virtualized or de-virtualized on-demand. Then, on top of each slice, an on-demand VIM is instantiated to control the allocated resources. As a realization of this architecture, we introduce the DC Slice Controller, a system able to deploy and delivery full operational VIMs based on generic templates. We evaluate the effectiveness of the proposed system deploying three VIMs (VLSP, Kubernetes, and OpenStack) over commodity hardware. Experimental results show that the DC Slice Controller can timely provide a slice even when dealing with sophisticated VIMs such as OpenStack. As an example, we were able to delivery a fully functional OpenStack in four nodes in less than 10 minutes

    Network slicing for beyond 5G system: an overview of the smart port use case

    Get PDF
    As the idea of a new wireless communication standard (5G) started to circulate around the world, there was much speculation regarding its performance, making it necessary to carry out further research by keeping in view the challenges presented by it. 5G is considered a multi-system support network due to its ability to provide benefits to vertical industries. Due to the wide range of devices and applications, it is essential to provide support for massively interconnected devices. Network slicing has emerged as the key technology to meet the requirements of the communications network. In this paper, we present a review of the latest achievements of 5G network slicing by comparing the architecture of The Next Generation Mobile Network Alliance’s (NGMN’s) and 5G-PPP, using the enabling technologies software-defined networking (SDN) and network function virtualization (NFV). We then review and discuss machine learning (ML) techniques and their integration with network slicing for beyond 5G networks and elaborate on how ML techniques can be useful for mobility prediction and resource management. Lastly, we propose the use case of network slicing based on ML techniques in a smart seaport environment, which will help to manage the resources more efficiently

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa
    corecore