51 research outputs found

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    Optimal Placement of Relay Stations in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are a collection of nodes organized into a cooperative network with sensing, processing and transmitting capabilities. WSNs are becoming an increasingly prominent technology that can be used in diverse application areas. In WSNs, cooperative relay stations are projected as one of the most cost effective solutions to meet the demanding requirement of capacity enhancement. In this paper, major concerns of the wireless sensor networks addressed are optimizing the number of relay stations required for covering the desired percentage of sensor nodes by optimal placement of relay stations and optimal assignment of the sensors to the relay stations. The joint problem of relay station placement and coverage is formulated into a mixed integer program which is solvable by commercial GAMS software with Xpress-MP Solver. Sensitivity analysis is carried out, along with a case study to demonstrate the performance gain of the model

    이동통신 네트워크에서의 QoS 패킷 스케줄러 설계 및 고정 릴레이 관련 주파수 재사용 관리 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 박세웅.The main interest of this paper is to understand a basic approach to provide more efficient method to allocate radio resources in the mobile communication systems, especially in which radio resources could be allocated by both frequency and time division multiple access. So, we consider OFDMA system and the ideas described in this paper could be easily applied to the current and next generation mobile communication systems. This paper studies two basic research themesa QoS packet scheduler design and fixed relay resource management policies based on frequency reuse in mobile networks. This paper considers novel scheduler structures that are executable in the environments of multiple traffic classes and multiple frequency channels. To design a scheduler structure for multiple traffic classes, we first propose a scheduler selection rule that uses the priority of traffic class and the urgency level of each packet. Then we relax the barrier of traffic class priority when a high priority packet has some room in waiting time. This gives us a chance to exploit multiuser diversity, thereby giving more flexibility in scheduling. Our considered scheduler can achieve higher throughput compared to the simple extension of conventional modified largest weighted delay first (MLWDF) scheduler while maintaining the delay performance for QoS class traffic. We also design a scheduler structure for multiple frequency channels that chooses a good channel for each user whenever possible to exploit frequency diversity. The simulation results show that our proposed scheduler increases the total system throughput by up to 50% without degrading the delay performance. This paper also introduces radio resource management schemes based on frequency reuse for fixed relay stations in mobile cellular networks. Mobile stations in the cell boundary experience poor spectral efficiency due to the path loss and interference from adjacent cells. Therefore, satisfying QoS requirements of each MS at the cell boundary has been an important issue. To resolve this spectral efficiency problem at the cell boundary, deploying fixed relay stations has been actively considered. In this paper, we consider radio resource management policies based on frequency reuse for fixed relays that include path selection rules, frequency reuse pattern matching, and frame transmission pattern matching among cells. We evaluate performance of each policy by varying parameter values such as relay stations position and frequency reuse factor. Through Monte Carlo simulations and mathematical analysis, we suggest some optimal parameter values for each policy and discuss some implementation issues that need to be considered in practical deployment of relay stations. We also surveyed further works that many researchers have been studied to tackle the similar problems of QoS scheduling and resource management for relay with our proposed work. We expect that there would be more future works by priority-based approach and energy-aware approach for QoS scheduling. Also current trends such as the rising interest in IoT system, discussion of densification of cells and D2D communications in 5G systems make us expect that the researches in these topics related with relays would be popular in the future. We also think that there are many interesting problems regarding QoS support and resource management still waiting to be tackled, especially combined with recent key topics in mobile communication systems such as 5G standardization, AI and NFV/SDN.Chapter 1 Introduction 1 1.1 QoS Packet Scheduler 4 1.2 Fixed Relay Frequency Reuse Policies 6 Chapter 2 Scheduler Design for Multiple Traffic Classes in OFDMA Networks 10 2.1 Proposed Schedulers 10 2.1.1 Scheduler Structures 12 2.1.2 MLWDF scheduler for Multiple Traffic Classes 13 2.1.3 Joint Scheduler 13 2.2 System Model 18 2.3 Performance Evaluation 19 2.3.1 Schedulers for Multiple Traffic Classes 20 2.3.2 Impact of Scheduler Selection Rule 25 2.3.3 Frame Based Schedulers 27 2.3.4 Impact of Partial Feedback 30 2.3.5 Adaptive Threshold Version Schedulers 33 2.4 Conclusion 36 Chapter 3 Frequency Reuse Policies for Fixed Relays in Cellular Networks 40 3.1 System Model 40 3.1.1 Frame Transmission and Frequency Reuse Patterns among RSs 42 3.1.2 Positioning of RSs and Channel Capacity 44 3.1.3 Area Spectral Efficiency 45 3.2 Radio Resource Management Policies Based on Frequency Reuse 46 3.2.1 Path Selection Rule 46 3.2.2 Frequency Reuse and Frame Transmission Pattern Matchings among Cells 52 3.3 Monte Carlo Simulation and Results 53 3.4 Consideration of Practical Issues 80 3.5 Conclusion 81 Chapter 4 Surveys of Further Works 83 4.1 Further Works on QoS Schedulers 83 4.1.1 WiMAX Schedulers 85 4.1.2 LTE Schedulers 92 4.2 Further Works on Radio Resource Management in Relay Systems 98 4.3 Future Challenges 100 Chapter 5 Conclusion 104 Bibliography 107 초록 127Docto

    Multi-cell Coordination Techniques for DL OFDMA Multi-hop Cellular Networks

    Get PDF
    The main objective of this project is to design coordinated spectrum sharing and reuse techniques among cells with the goal of mitigating interference at the cell edge and enhance the overall system capacity. The performance of the developed algorithm will be evaluated in an 802.16m (WiMAX) environment. In conventional cellular networks, frequency planning is usually considered to keep an acceptable signal-to-interference-plus noise ratio (SINR) level, especially at cell boundaries. Frequency assignations are done under a cell-by-cell basis, without any coordination between them to manage interference. Particularly this approach, however, hampers the system spectral efficiency at low reuse rates. For a specific reuse factor, the system throughput depends highly on the mobile station (MS) distribution and the channel conditions of the users to be served. If users served from different base stations (BS) experience a low level of interference, radio resources may be reused, applying a high reuse factor and thus, increasing the system spectral efficiency. On the other side, if the served users experience large interference, orthogonal transmissions are better and therefore a lower frequency reuse factor should be used. As a consequence, a dynamic reuse factor is preferable over a fixed one. This work addresses the design of joint multi-cell resource allocation and scheduling with coordination among neighbouring base stations (outer coordination) or sectors belonging to the same one (inner coordination) as a way to achieve flexible reuse factors. We propose a convex optimization framework to address the problem of coordinating bandwidth allocation in BS coordination problems. The proposed framework allows for different scheduling policies, which have an impact on the suitability of the reuse factor, since they determine which users have to be served. Therefore, it makes sense to consider the reuse factor as a result of the scheduling decision. To support the proposed techniques the BSs shall be capable of exchanging information with each other (decentralized approach) or with some control element in the back-haul network as an ASN gateway or some self-organization control entity (centralized approach)

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Tecnologie di relay per sistemi mobili LTE-advanced e WiMax

    Get PDF
    In questa tesi vengono presentate alcune tecnologie di relay che potrebbero essere incluse negli standard di telefonia cellulare di prossima generazione LTE-Advanced e Wimax. Inizialmente vengono illustrare alcune caratteristiche tecniche dei due standard menzionati. Nel capitolo successivo vengono presentati i diversi tipi di relay previsti dai due standard, tre tecniche di trasmissione utilizzabili, vautando pro e contro di ognuna, e alcune modifiche necessarie agli standard per poter supportare il relay; in particolare ci si sffermerà sulla struttura del frame. Successivamente vengono illustrati uno schema di pairing centralizzato e uno distribuito per la selezione delle stazioni partner nella fase di relay; inoltre viene descritto uno schema di pairing per la selezione dei relay ottimi per effettuare trasmissioni cooperative. Infine vengono valutate le prestazioni delle tre differenti tecniche di trasmissione in termini di efficienza di trasmissione e vengono anche valutate le prestazioni degli schemi di pairing proposti in termini di throughput raggiungibile e probabilità di accoppiament

    Power-Aware Planning and Design for Next Generation Wireless Networks

    Get PDF
    Mobile network operators have witnessed a transition from being voice dominated to video/data domination, which leads to a dramatic traffic growth over the past decade. With the 4G wireless communication systems being deployed in the world most recently, the fifth generation (5G) mobile and wireless communica- tion technologies are emerging into research fields. The fast growing data traffic volume and dramatic expansion of network infrastructures will inevitably trigger tremendous escalation of energy consumption in wireless networks, which will re- sult in the increase of greenhouse gas emission and pose ever increasing urgency on the environmental protection and sustainable network development. Thus, energy-efficiency is one of the most important rules that 5G network planning and design should follow. This dissertation presents power-aware planning and design for next generation wireless networks. We study network planning and design problems in both offline planning and online resource allocation. We propose approximation algo- rithms and effective heuristics for various network design scenarios, with different wireless network setups and different power saving optimization objectives. We aim to save power consumption on both base stations (BSs) and user equipments (UEs) by leveraging wireless relay placement, small cell deployment, device-to- device communications and base station consolidation. We first study a joint signal-aware relay station placement and power alloca- tion problem with consideration for multiple related physical constraints such as channel capacity, signal to noise ratio requirement of subscribers, relay power and network topology in multihop wireless relay networks. We present approximation schemes which first find a minimum number of relay stations, using maximum transmit power, to cover all the subscribers meeting each SNR requirement, and then ensure communications between any subscriber and a base station by ad- justing the transmit power of each relay station. In order to save power on BS, we propose a practical solution and offer a new perspective on implementing green wireless networks by embracing small cell networks. Many existing works have proposed to schedule base station into sleep to save energy. However, in reality, it is very difficult to shut down and reboot BSs frequently due to nu- merous technical issues and performance requirements. Instead of putting BSs into sleep, we tactically reduce the coverage of each base station, and strategi- cally place microcells to offload the traffic transmitted to/from BSs to save total power consumption. In online resource allocation, we aim to save tranmit power of UEs by en- abling device-to-device (D2D) communications in OFDMA-based wireless net- works. Most existing works on D2D communications either targeted CDMA- based single-channel networks or aimed at maximizing network throughput. We formally define an optimization problem based on a practical link data rate model, whose objective is to minimize total power consumption while meeting user data rate requirements. We propose to solve it using a joint optimization approach by presenting two effective and efficient algorithms, which both jointly determine mode selection, channel allocation and power assignment. In the last part of this dissertation, we propose to leverage load migration and base station consolidation for green communications and consider a power- efficient network planning problem in virtualized cognitive radio networks with the objective of minimizing total power consumption while meeting traffic load demand of each Mobile Virtual Network Operator (MVNO). First we present a Mixed Integer Linear Programming (MILP) to provide optimal solutions. Then we present a general optimization framework to guide algorithm design, which solves two subproblems, channel assignment and load allocation, in sequence. In addition, we present an effective heuristic algorithm that jointly solves the two subproblems. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods

    A Survey on Scheduling in IEEE 802.16 Mesh Mode

    Get PDF
    Cataloged from PDF version of article.IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods
    corecore