1,585 research outputs found

    TimeTrader: Exploiting Latency Tail to Save Datacenter Energy for On-line Data-Intensive Applications

    Get PDF
    Datacenters running on-line, data-intensive applications (OLDIs) consume significant amounts of energy. However, reducing their energy is challenging due to their tight response time requirements. A key aspect of OLDIs is that each user query goes to all or many of the nodes in the cluster, so that the overall time budget is dictated by the tail of the replies' latency distribution; replies see latency variations both in the network and compute. Previous work proposes to achieve load-proportional energy by slowing down the computation at lower datacenter loads based directly on response times (i.e., at lower loads, the proposal exploits the average slack in the time budget provisioned for the peak load). In contrast, we propose TimeTrader to reduce energy by exploiting the latency slack in the sub- critical replies which arrive before the deadline (e.g., 80% of replies are 3-4x faster than the tail). This slack is present at all loads and subsumes the previous work's load-related slack. While the previous work shifts the leaves' response time distribution to consume the slack at lower loads, TimeTrader reshapes the distribution at all loads by slowing down individual sub-critical nodes without increasing missed deadlines. TimeTrader exploits slack in both the network and compute budgets. Further, TimeTrader leverages Earliest Deadline First scheduling to largely decouple critical requests from the queuing delays of sub- critical requests which can then be slowed down without hurting critical requests. A combination of real-system measurements and at-scale simulations shows that without adding to missed deadlines, TimeTrader saves 15-19% and 41-49% energy at 90% and 30% loading, respectively, in a datacenter with 512 nodes, whereas previous work saves 0% and 31-37%.Comment: 13 page

    Performance Controlled Power Optimization for Virtualized Internet Datacenters

    Get PDF
    Modern data centers must provide performance assurance for complex system software such as web applications. In addition, the power consumption of data centers needs to be minimized to reduce operating costs and avoid system overheating. In recent years, more and more data centers start to adopt server virtualization strategies for resource sharing to reduce hardware and operating costs by consolidating applications previously running on multiple physical servers onto a single physical server. In this dissertation, several power efficient algorithms are proposed to effectively reduce server power consumption while achieving the required application-level performance for virtualized servers. First, at the server level this dissertation proposes two control solutions based on dynamic voltage and frequency scaling (DVFS) technology and request batching technology. The two solutions share a performance balancing technique that maintains performance balancing among all virtual machines so that they can have approximately the same performance level relative to their allowed peak values. Then, when the workload intensity is light, we adopt the request batching technology by using a controller to determine the time length for periodically batching incoming requests and putting the processor into sleep mode. When the workload intensity changes from light to moderate, request batching is automatically switched to DVFS to increase the processor frequency for performance guarantees. Second, at the datacenter level, this dissertation proposes a performance-controlled power optimization solution for virtualized server clusters with multi-tier applications. The solution utilizes both DVFS and server consolidation strategies for maximized power savings by integrating feedback control with optimization strategies. At the application level, a multi-input-multi-output controller is designed to achieve the desired performance for applications spanning multiple VMs, on a short time scale, by reallocating the CPU resources and DVFS. At the cluster level, a power optimizer is proposed to incrementally consolidate VMs onto the most power-efficient servers on a longer time scale. Finally, this dissertation proposes a VM scheduling algorithm that exploits core performance heterogeneity to optimize the overall system energy efficiency. The four algorithms at the three different levels are demonstrated with empirical results on hardware testbeds and trace-driven simulations and compared against state-of-the-art baselines

    Simulation of Efficient Real-Time Scheduling and Power Optimisation

    Get PDF
    International audienceSophisticated applications turn out to be executed upon more than one CPU for practical and economic reasons. Due to advances in circuit technology and performance limitation, multi-core technology has become the mainstream in CPU designs. However, the most serious limitation of these devices is the battery lifetime since battery technology is not keeping up with the rest of the power-hungry processors and peripherals used in today's mobile devices. As a solution, many investigations have turned toward the algorithms of power management combined with some scheduling policies. They can make significant energy saving while preserving the temporal constraints of these embedded systems. Reducing energy, especially, affect not only the battery lifetime, but also aim to reduce the heat generated by real-time embedded controller in various products or even to decrease the conditions of cooling and the costs, in the large scale, of giant multiprocessor computers. To assess the behavior and performance of the strategy of scheduling a flexible multiprocessor scheduling simulation and evaluation platform is needed. This paper puts forth the claim that the STORM simulator improves application quality both in terms of execution time and energy consumption for a high performance mobile computing embedded system design

    Chapter One – An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

    Get PDF
    Power dissipation and energy consumption became the primary design constraint for almost all computer systems in the last 15 years. Both computer architects and circuit designers intent to reduce power and energy (without a performance degradation) at all design levels, as it is currently the main obstacle to continue with further scaling according to Moore's law. The aim of this survey is to provide a comprehensive overview of power- and energy-efficient “state-of-the-art” techniques. We classify techniques by component where they apply to, which is the most natural way from a designer point of view. We further divide the techniques by the component of power/energy they optimize (static or dynamic), covering in that way complete low-power design flow at the architectural level. At the end, we conclude that only a holistic approach that assumes optimizations at all design levels can lead to significant savings.Peer ReviewedPostprint (published version

    Fine-grained Energy and Thermal Management using Real-time Power Sensors

    Get PDF
    With extensive use of battery powered devices such as smartphones, laptops an
    corecore