1,142 research outputs found

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals

    Get PDF
    ProducciĂłn CientĂ­ficaDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.Ministerio de Ciencia e InnovaciĂłn /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)CIBER -Consorcio Centro de InvestigaciĂłn BiomĂ©dica en Red- (CB19/01/00012), Instituto de Salud Carlos IIINational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)Ministerio de Ciencia e InnovaciĂłn - Agencia Estatal de InvestigaciĂłn- “RamĂłn y Cajal” grant (RYC2019-028566-I

    Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests

    Get PDF
    Introduction: The apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour of sleep, is still used as an important index to assess sleep disordered breathing (SDB) severity, where hypopneas are confirmed by the presence of an oxygen desaturation or an arousal. Ambulatory polygraphy without neurological signals, often referred to as home sleep apnea testing (HSAT), can potentially underestimate the severity of sleep disordered breathing (SDB) as sleep and arousals are not assessed. We aim to improve the diagnostic accuracy of HSATs by extracting surrogate sleep and arousal information derived from autonomic nervous system activity with artificial intelligence.Methods: We used polysomnographic (PSG) recordings from 245 subjects (148 with simultaneously recorded HSATs) to develop and validate a new algorithm to detect autonomic arousals using artificial intelligence. A clinically validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical arousals, and sleep stages in PSGs, and provided respiratory events and sleep stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of the newly developed algorithm, we evaluated the accuracy of the estimated arousal index and HSAT-derived surrogates for the AHI.Results: The agreement between the autonomic and cortical arousal index was moderate to good with an intraclass correlation coefficient of 0.73. When using thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and severe, the addition of sleep and arousal information significantly improved the classification accuracy from 70.2% (Cohen’s Îș = 0.58) to 80.4% (Îș = 0.72), with a significant reduction of patients where the severity category was underestimated from 18.8% to 7.3%.Discussion: Extracting sleep and arousal information from autonomic nervous system activity can improve the diagnostic accuracy of HSATs by significantly reducing the probability of underestimating SDB severity without compromising specificity

    Predicting Subjective Sleep Quality Using Objective Measurements in Older Adults

    Get PDF
    Humans spend almost a third of their lives asleep. Sleep has a pivotal effect on job performance, memory, fatigue recovery, and both mental and physical health. Sleep quality (SQ) is a subjective experience and reported via patients’ self-reports. Predicting subjective SQ based on objective measurements can enhance diagnosis and treatment of SQ defects, especially in older adults who are subject to poor SQ. In this dissertation, we assessed enhancement of subjective SQ prediction using an easy-to-use E4 wearable device, machine learning techniques and identifying disease-specific risk factors of abnormal SQ in older adults. First, we designed a clinical decision support system to estimate SQ and feeling refreshed after sleep using data extracted from an E4 wearable device. Specifically, we processed four raw physiological signals of heart rate variability (HRV), electrodermal activity, body movement, and skin temperature using distinct signal processing methodologies. Following this, we extracted signal-specific features and selected a subset of the features using recursive feature elimination cross validation strategy to maximize the accuracy of SQ classifiers in predicting the SQ of older caregivers. Second, we investigated discovering more effective features in SQ prediction using HRV features which are not only effortlessly measurable but also can reflect sleep stage transitions and some sleep disorders. Evaluation of two interpretable machine learning methodologies and a convolutional neural network (CNN) methodology demonstrated the CNN outperforms by an accuracy of 0.6 in predicting light, medium, and deep SQ. This outcome verified the capability of using HRV features measurable by easy-to-use wearable devices, in predicting SQ. Finally, we scrutinized daytime sleepiness risk factors as a sign of abnormal SQ from four perspectives: sleep fragmented, sleep propensity, sleep resilience, and non-restorative sleep. The analysis demonstrates distinguishability of the main risk factors of excessive daytime sleepiness (EDS) between patients suffering from fragmented sleep (e.g. apnea) and sleep propensity. We identified the average area under oxygen desaturation curve corresponds to apnea/hypopnea event as a disease-specific risk factor of abnormal SQ. Our further daytime sleepiness prediction demonstrated the significant role of the founded disease-specific risk factor as well

    Identification of Respiratory Sounds Collected from Microphones Embedded in Mobile Phones

    Get PDF
    Sudden deterioration of condition in patients with various diseases, such as cardiopulmonary arrest, may result in poor outcome even after resuscitation. Early detection of deterioration is important in medical and long-term care settings, regardless of the acute or chronic phase of disease. Early detection and appropriate interventions are essential before resuscitating measures are required. Among the vital signs that indicate the general condition of a patient, respiratory rate has a greater ability to predict serious events such as thromboembolism and sepsis than heart rate and blood pressure, even in early stages. Despite its importance, however, respiratory rate is frequently overlooked and not measured, making it a neglected vital sign. To facilitate the measurement of respiratory rate, a non-invasive method of detecting respiratory sounds was developed based on deep learning technology, using a built-in microphone in a smartphone. Smartphones attached to the bed headboards of 20 participants undergoing polysomnography (PSG) at Kyoto University Hospital recorded respiratory sounds. Sound data were synchronized with overnight respiratory information. After excluding periods of abnormal breathing on the PSG report, sound data were processed for each 1-minute period. Expiration sound was determined using the pressure flow sensor signal on PSG. Finally, a model to identify the expiration section from the sound information was created using a deep learning algorithm from the convolutional Long Short Term Memory network. The accuracy of the learning model in identifying the expiratory section was 0.791, indicating that respiratory rate can be determined using the microphone in a smartphone. By collecting data from more patients and improving the accuracy of this method, respiratory rates could be more easily monitored in all situations, both inside and outside the hospital

    Diagnosis of pediatric obstructive sleep apnea: Preliminary findingsusing automatic analysis of airflow and oximetry recordings obtainedat patients’ home

    Get PDF
    Producción CientíficaThe obstructive sleep apnea syndrome (OSAS) greatly affects both the health and the quality of life of chil-dren. Therefore, an early diagnosis is crucial to avoid their severe consequences. However, the standarddiagnostic test (polysomnography, PSG) is time-demanding, complex, and costly. We aim at assessinga new methodology for the pediatric OSAS diagnosis to reduce these drawbacks. Airflow (AF) and oxy-gen saturation (SpO2) at-home recordings from 50 children were automatically processed. Informationfrom the spectrum of AF was evaluated, as well as combined with 3% oxygen desaturation index (ODI3)through a logistic regression model. A bootstrap methodology was conducted to validate the results.OSAS significantly increased the spectral content of AF at two abnormal frequency bands below (BW1)and above (BW2) the normal respiratory range. These novel bands are consistent with the occurrenceof apneic events and the posterior respiratory overexertion, respectively. The spectral information fromBW1 and BW2 showed complementarity both between them and with ODI3. A logistic regression modelbuilt with 3 AF spectral features (2 from BW1 and 1 from BW2) and ODI3 achieved (mean and 95% confi-dence interval): 85.9% sensitivity [64.5–98.7]; 87.4% specificity [70.2–98.6]; 86.3% accuracy [74.9–95.4];0.947 area under the receiver-operating characteristics curve [0.826–1]; 88.4% positive predictive value[72.3–98.5]; and 85.8% negative predictive value [65.8–98.5]. The combination of the spectral informationfrom two novel AF bands with the ODI3 from SpO2is useful for the diagnosis of OSAS in children.Ministerio de Economía y Competitividad (project TEC2011-22987)Junta de Castilla y León (project VA059U13

    A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep

    Get PDF
    Objective: The objective is to develop a new deep learning method for the estimation of respiratory effort from a chest-worn accelerometer during sleep. We evaluate performance, compare it against a state-of-the art method, and assess whether it can differentiate between sleep stages. Methods: In 146 participants undergoing overnight polysomnography data were collected from an accelerometer worn on the chest. The study data were partitioned into train, validation, and holdout (test) sets. We used the train and validation sets to generate and train a convolutional neural network and performed model selection respectively, while we used the holdout set (72 participants) to evaluate performance. Results: A convolutional neural network with 9 layers and 207,855 parameters was automatically generated and trained. The neural network significantly outperformed the best performing conventional method, based on Principal Component Analysis; it reduced the Mean Squared Error from 0.26 to 0.11 and it also performed better in the detection of breaths (Sensitivity 98.4 %, PPV 98.2 %). In addition, the neural network exposed significant differences in characteristics of respiratory effort between sleep stages (p &lt; 0.001). Conclusion: The deep learning method predicts respiratory effort with low error and is sensitive and precise in the detection of breaths. In addition, it reproduces differences between sleep stages, which may enable automatic sleep staging, using just a chest-worn accelerometer.</p

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Toråcica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad
    • 

    corecore