7 research outputs found

    Early experience with patient-specific low-cost 3D-printed polymethylmethacrylate cranioplasty implants in a lower-middle-income-country: Technical note and economic analysis

    Get PDF
    Background: Polymethyl methacrylate (PMMA) cranioplasty, while widely prevalent, has limitations associated with freehand manual intraoperative molding. PMMA has been superseded by titanium or Polyetheretherketone implants, prefabricated commercially from preoperative CT scans, and boasting superior clinical and cosmetic outcomes. However, such services are extremely inaccessible and unaffordable in the lower-middle-income country (LMIC) settings. The study aims to describe, in detail, the process of making ultra-low-cost patient-specific PMMA cranioplasty implants with minimum resources using open-access software. We report the first such service from the public health-care system within Pakistan, a LMIC. Methods: Using open-source software, preoperative CT heads were used to prefabricate three-dimensional implants. Both implant and cranial defects were printed using polylactic acid (PLA) to assess the implant’s size and fit preoperatively. From the PLA implant, we fashioned a silicon mold that shapes the PMMA implant. Ten patients who underwent cranioplasty using our technique for various cranial defects with at least a 12-month follow-up were retrospectively reviewed. Clinical, cosmetic, and radiological outcomes were objectively assessed. Results: Etiology of injury was trauma (8), malignant MCA infarct (1), and arteriovenous fistula (1). We produced seven frontotemporal-parietal implants, one bifrontal, one frontal, and one frontoparietal. At 1 year, eight patients reported their cosmetic appearance comparable to before the defect. Radiological outcome was classified as “excellent” for eight patients. No postoperative complications were encountered, nor did any implant have to be removed. One patient’s implant involving the orbital ridge had an unsatisfactory cosmetic outcome and required revision surgery. The average cost per implant to the National Health Service was US$40. Conclusion: Prefabricated patient-specific PMMA cranioplasty implants are cost-effective. A single surgeon can fashion them in a limited resource setting and provide personalized medicine with excellent clinical/cosmetic-radiological results. Our method produces patient-specific cranioplasty implants in an otherwise unaffordable LMIC setting

    Intraoperative fabrication of patient-specific moulded implants for skull reconstruction: single-centre experience of 28 cases

    Get PDF
    Background: Intraoperatively fabricated polymethylmethacrylate (PMMA) implants based on computer-designed moulds were used to improve cosmetic results after hard tissue replacement. To assess the implant's cosmetic and functional results we performed both subjective and objective assessments. Methods: This retrospective analysis was performed using a cohort of 28 patients who received PMMA implants between February 2009 and March 2012. The cosmetic and functional results were assessed using a patient questionnaire. Furthermore an objective volumetric subtraction score (0-100) was applied and implant thickness, as well as gaps and tiers, were measured. Results: Patients mainly judged their cosmetic result as "good”. Two of the 28 patients found their cosmetic result unfavourable. The functional result and stability was mainly judged to be good. Measurements of implant thickness showed a very high correlation with the thickness of the contralateral bone. Volumetric subtraction led to a median quality of 80 on a scale from 0 to 100. Median gaps around the margins of the implant were 1.5mm parietally, 1.7mm frontally and 3.5mm fronto-orbitally, and median tiers were 1.2mm, 0mm and 0mm respectively. The overall rate of surgical revisions was 10.7% (three patients). Two patients suffered from wound healing disturbances (7.1%). The overall complication rate was comparable to other reports in the literature. Conclusions: Implantation of intraoperatively fabricated patient-specific moulded implants is a cost-effective and safe technique leading to good clinical results with a low complication rate

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery
    corecore