6 research outputs found

    Surface Electromyographic (sEMG) Transduction of Hand Joint Angles for Human Interfacing Devices (HID)

    Get PDF
    This is an investigation of the use of surface electromyography (sEMG) as a tool to improve human interfacing devices (HID) information bandwidth through the transduction of the fingertip workspace. It combines the work of Merletti et al and Jarque-Bou et al to design an open-source framework for Fingertip Workspace based Human Interfacing Devices (HID). In this framework, the fingertip workspace is defined as the system of forearm and hand muscle force through a tensor which describes hand anthropometry. The thesis discusses the electrophysiology of muscle tissue along with the anatomy and physiology of the arm in pursuit of optimizing sensor location, muscle force measurements, and viable command gestures. Algorithms for correlating sEMG to hand joint angle are investigated using MATLAB for both static and moving gestures. Seven sEMG spots and Fingertip Joint Angles recorded by Jarque Bou et al are investigated for the application of sEMG to Human Interfacing Devices (HID). Such technology is termed Gesture Computer Interfacing (GCI) and has been shown feasible through devices such as CTRL Labs interface, and models such as those of Sartori, Merletti, and Zhao. Muscles under sEMG spots in this dataset and the actions related to them are discussed, along with what muscles and hand actions are not visible within this dataset. Viable gestures for detection algorithms are discussed based on the muscles discerned to be visible in the dataset through intensity, spectral moment, power spectra, and coherence. Detection and isolation of such viable actions is fundamental to designing an EMG driven musculoskeletal model of the hand needed to facilitate GCI. Enveloping, spectral moment, power spectrum, and coherence analysis are applied to a Sollerman Hand Function Test sEMG dataset of twenty-two subjects performing 26 activities of living to differentiate pinching and grasping tasks. Pinches and grasps were found to cause very different activation patterns in sEMG spot 3 relating to flexion of digits I - V. Spectral moment was found to be less correlated with differentiation and provided information about the degree of object manipulation performed and extent of fatigue during each task. Coherence was shown to increase between flexors and extensors with intensity of task but was found corrupted by crosstalk with increasing intensity of muscular activation. Some spectral results correlated between finger flexor and extensor power spectra showed anticipatory coherence between the muscle groups at the end of object manipulation. An sEMG amplification system capable of capturing HD-sEMG with a bandwidth of 300 and 500 Hz at a sampling frequency of 2 kHz was designed for future work. The system was designed in ordinance with current IEEE research on sensor-electrode characteristics. Furthermore, discussion of solutions to open issues in HD-sEMG is provided. This work did not implement the designed wristband but serves as a literature review and open-source design using commercially available technologies

    Epidermal sensors for monitoring skin physiology

    Get PDF
    Wearable sensors are revolutionizing personalised healthcare and have continuously progressed over the years in both research and commercialization. However, most efforts on wearable sensors have been focused on tracking movement, spatial position and continuous monitoring of vital signs such as heart rate or respiration rate. Recently, there is a demand to obtain biochemical information from the body using wearables. This demand stems from an individuals’ desire for improved personal health awareness as well as the drive for doctors to continuously obtain medical information for a patients’ disease management. Epidermal sensors are a sub-class of wearable sensors that can intimately integrate with skin and have the potential for monitoring physical changes as well as detecting biomarkers within skin that can be related to human health. The holy grail for these types of sensors is to achieve continuous real-time monitoring of the state of an individual and the development of these sensors are paving the way towards personalised healthcare. However, skin is highly anisotropic which makes it challenging to keep epidermal sensors in consistent contact with skin. It is important that these sensors remain in contact with skin in order to measure its electrical properties and acquire high fidelity signals. The key objective of this thesis is to develop thin conformable, stretchable epidermal sensors for tracking changes in skin physiology. The initial iteration of the screen printed epidermal sensor comprised of a flexible silver film. Impedance spectroscopy was used to understand the electrical signals generated on skin and it was used to measure relative changes due to varying water content. However, this iteration was more suited for single use. The next chapters explore different ink formulations and adherence methodologies to enhance the epidermal sensors adherence to skin. Impedance spectroscopy was used to characterise the electrical signals from these different epidermal sensor iterations, while tensile testing and on-body assessment was used to characterise its mechanical properties. The final chapter focused on investigating the use of phenyl boronic acid (PBA) functionalized hydrogels to modify the epidermal sensor with responsive hydrogel materials to enable chemical sensing of analytes relevant to skin physiology. Impedance spectroscopy was used to characterise and understand the electrical signals generated by the binding interaction of the PBA and analytes using the sensor. Overall, the work demonstrates the challenges of developing these epidermal sensors as well as presenting their potential for continuous monitoring of human skin in the future

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfĂŒgbare und leicht zugĂ€ngliche FlĂ€che fĂŒr Interaktion. JĂŒngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer GerĂ€te gefĂŒhrt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten EpidermisgerĂ€te haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dĂŒnn, oft dĂŒnner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles VerstĂ€ndnis von EpidermisgerĂ€ten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen AnsĂ€tzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinĂ€re Analyse von EpidermisgerĂ€ten die Designziele und Herausforderungen, die angegangen werden mĂŒssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale GerĂ€te unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des GerĂ€ts und den taktilen Empfindlichkeitsschwellen sowie der FĂ€higkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen fĂŒr die Realisierung epidermaler GerĂ€te ab. Zweitens trĂ€gt diese Thesis zu neuartigen EpidermisgerĂ€ten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trĂ€gt zur Herstellung und zum Design neuartiger EpidermisgerĂ€te bei, die hochgradig an die Haut angepasst sind und BerĂŒhrungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese GerĂ€te können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum fĂŒr die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir prĂ€sentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und GrĂ¶ĂŸen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestĂ€tigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-VerhĂ€ltnis erreicht und eine hohe rĂ€umliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da EpidermisgerĂ€te in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestĂŒtzten Design von multimodalen EpidermisgerĂ€ten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten GerĂ€te können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale AktivitĂ€t) messen. DarĂŒber hinaus stellen wir eine computergestĂŒtzte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte GerĂ€tedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der FĂ€higkeit zur Erfassung physiologischer Signale und der GrĂ¶ĂŸe des GerĂ€ts. Das grafische Tool ermöglicht die einfache Festlegung von DesignprĂ€ferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinĂ€ren Perspektive einen Fahrplan fĂŒr zukĂŒnftige Forschung in diesem Bereich, indem wir die nĂ€chsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trĂ€gt diese Arbeit zu einem ganzheitlichen VerstĂ€ndnis von EpidermisgerĂ€ten bei: Sie liefert ein empirisches und konzeptionelles VerstĂ€ndnis sowie technische Einblicke durch BeitrĂ€ge zu DIY (Do-It-Yourself), schneller Fertigung und computergestĂŒtzten Entwurfstechniken

    Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders

    Get PDF
    The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders
    corecore