408 research outputs found

    触覚フィードバックを用いた体性感覚の操作

    Get PDF
    人間が自らの肉体に対して持つ興味は大きい.多くの人間は体力的・知能的・美的な面で他の人間よりも優れた肉体を欲すると考えられ,また様々な特殊な体を持つ空想上のキャラクターに憧れ人間とは異なる構造の身体に興味を持つ物も多いであろう.だが身体機能の向上のためには通常長期間の継続した訓練を必要とし,人間とは異なる身体への変身は不可能であるといえる.科学技術の発展に伴い肉体形状および運動機能への物理的な介入方法が広まりつつあるが,未だに身体的リスクと金銭的コストが高く,複雑な装置を必要とするため誰もが気軽に利用できるものではない.このような背景から本研究では,人間の肉体そのものに介入するのではなく,肉体が生成する感覚である体性感覚を肉体外部から操作することで肉体の主観的特性を操作することを目標とする.主に身体表面の感覚を刺激するアクチュエータとして広く使われているボイスコイル型振動子は,様々な触感の呈示を簡便なセットアップで実現できる.したがってこれを身体運動に同期させて駆動する振動フィードバックシステムを開発し,運動に伴って発生する身体内部の感覚を操作することを試みる.体性感覚の操作に関する本研究は2 つの戦略によって構成される.一つは体性感覚の「増強」である.これは自己身体運動を把握する能力を高め,より鮮明に,あるいは詳細に運動状態を知覚させる量的な操作である.一方で,もう一つの戦略は体性感覚の質的な操作である「変調」である.これは身体自体の硬さや重さといった特性を変化させることであり,結果として身体を構成する材質・構造を主観的に変調することになる.これら2 つの戦略に沿った具体的な手法を,体性感覚の増強に関して2 件,変調に関しても2件設計した.体性感覚の増強に関しては,第一にロータリスイッチの回転に伴うカチカチとした触覚・力覚フィードバック「カチカチ感」に着目した.これを肘関節に付与して運動時の体性感覚を鮮明化し,腕立て伏せ姿勢の教示を試みた(第3 章).第二に,自動車運転におけるアクセルペダルの操作を補助するため,ペダルの角度が一定値変化する度に瞬間的なクリック振動を呈示することで,ペダル角度の把握能力向上および操作性向上を試みた(第4 章).体性感覚の変調に関しては,第一に様々な材質の衝突振動を再現する減衰正弦波モデルに着目し,これを身体運動に同期させて呈示することで身体材質感の変調を試みた(第5 章).これによりロボットやゴム人間といった特殊なキャラクターの体性感覚の再現を目指した.第二に,ロボットキャラクターのみに着目し,実際のロボットに生じる振動加速度を記録・モデリング・再生する手法によりロボットの内部構造に起因する体性感覚まで再現することを試みた(第6 章).またロボット感体験の総合的なリアリティ向上のため高品質な視覚・聴覚刺激を組み合わせたバーチャルリアリティゲームを開発した.また体性感覚の操作をより広範囲で行うため,既存の触覚ディスプレイの問題点を考察し,身体広範囲に均等な触覚刺激を呈示する触覚ディスプレイを開発した(第7 章).最後に本研究全体のまとめと結論を述べ,今後の展望を示す(第8 章).電気通信大学201

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Minimising vibration in a flexible golf club during robotic simulations of a golf swing

    Get PDF
    Robots are widely used as substitutes for humans in situations involving repetitive tasks where a precise and repeatable motion is required. Sports technology is an area which has seen an increase in the implementation of robots which simulate specific human motions required for a sport. One purpose is to test sports equipment, where the requirement is for a motion to be performed with consistent variables. One issue which has arisen frequently in the robot simulation of humans is the inherent presence of vibration excited in a flexible object being manipulated by a robot, and this issue is not unfounded in the situation presented in this research, of a golf robot manipulating a flexible golf club during the simulation of a golf swing. It had been found that during robotic simulations of golf swings performed with the Miyamae Robo V at the Sports Technology Institute at Loughborough University, swing variables such as shaft deformation and clubhead orientation were dissimilar to those measured for human golf swings. Vibrations present in the golf club were identified as the key cause of the disparity between human and robot swing variables. This research sought to address this issue and find a method which could be applied to reduce clubhead vibrations present in robot simulations of a golf swing to improve their similarity to human swings. This would facilitate the use of the golf robot for equipment testing and club fitting. Golf swing variables were studied and measured for 14 human subjects with the aim being to understand the motion that the robot is required to simulate. A vibration damping gripper was then fitted to the robot to test the effect that changing the interface between the robot-excited vibrations and the club would have, this was achieved with a selection of silicone sleeves with differing material properties which could be attached to the club. Preliminary results showed a noticeable reduction in clubhead vibrations and this solution was investigated further. Mathematically modelling the robot was seen as the most suitable method for this as it meant the robot remained functional and allowed a number of solutions to be tested. Several iterations of a mathematical model were developed with the final model being structurally similar to the robot with the addition of a compliant grip and wrist. The method by which the robot is driven was also recognised as having a large effect on the level of vibration excited in the clubhead and the methodology behind generating smooth robot swing profiles is presented. The mathematical model was used to perform 6 swings and the resulting shaft deformation and clubhead vibration were compared with data from human swings. It was found that the model was capable of producing swing variables comparable to human swings, however in the downswing portion of the swing the magnitude of these variables were larger for the simulations. Simulations were made which sought to demonstrate the difference between the model replicating the rigid robot and a compliant system. Reductions in vibration were achieved in all swings, including those driven with robot feedback data which contains oscillations excited by the method with which the robot is driven

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 212

    Get PDF
    A bibliography listing 146 reports, articles, and other documents introduced into the NASA scientific and technical information system is presented. The subject coverage concentrates on the biological, psychological, and environmental factors involved in atmospheric and interplanetary flight. Related topics such as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, and exobiology are also given attention

    Tactile Sensing for Assistive Robotics

    Get PDF

    Sensory and cognitive factors in multi-digit touch, and its integration with vision

    Get PDF
    Every tactile sensation – an itch, a kiss, a hug, a pen gripped between fingers, a soft fabric brushing against the skin – is experienced in relation to the body. Normally, they occur somewhere on the body’s surface – they have spatiality. This sense of spatiality is what allows us to perceive a partner’s caress in terms of its changing location on the skin, its movement direction, speed, and extent. How this spatiality arises and how it is experienced is a thriving research topic, compelled by growing interest in the nature of tactile experiences from product design to brain-machine interfaces. The present thesis adds to this flourishing area of research by examining the unified spatial quality of touch. How does distinct spatial information converge from separate areas of the body surface to give rise to our normal unified experience of touch? After explaining the importance of this question in Chapter 1, a novel paradigm to tackle this problem will be presented, whereby participants are asked to estimate the average direction of two stimuli that are simultaneously moved across two different fingerpads. This paradigm is a laboratory analogue of the more ecological task of representing the overall movement of an object held between multiple fingers. An EEG study in Chapter 2 will reveal a brain mechanism that could facilitate such aggregated perception. Next, by characterising participants’ performance not just in terms of error rates, but by considering perceptual sensitivity, bias, precision, and signal weighting, a series of psychophysical experiments will show that this aggregation ability differs for within- and between-hand perception (Chapter 3), is independent from somatotopically-defined circuitry (Chapter 4) and arises after proprioceptive input about hand posture is accounted for (Chapter 5). Finally, inspired by the demand for integrated tactile and visual experience in virtual reality and the potential of tactile interface to aid navigation, Chapter 6 will examine the contribution of tactile spatiality on visual spatial experience. Ultimately, the present thesis will reveal sensory factors that limit precise representation of concurrently occurring dynamic tactile events. It will point to cognitive strategies the brain may employ to overcome those limitations to tactually perceive coherent objects. As such, this thesis advances somatosensory research beyond merely examining the selectivity to and discrimination between experienced tactile inputs, to considering the unified experience of touch despite distinct stimulus elements. The findings also have practical implications for the design of functional tactile interfaces

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore