51 research outputs found

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Fault Tolerant Free Gait and Footstep Planning for Hexapod Robot Based on Monte-Carlo Tree

    Full text link
    Legged robots can pass through complex field environments by selecting gaits and discrete footholds carefully. Traditional methods plan gait and foothold separately and treat them as the single-step optimal process. However, such processing causes its poor passability in a sparse foothold environment. This paper novelly proposes a coordinative planning method for hexapod robots that regards the planning of gait and foothold as a sequence optimization problem with the consideration of dealing with the harshness of the environment as leg fault. The Monte Carlo tree search algorithm(MCTS) is used to optimize the entire sequence. Two methods, FastMCTS, and SlidingMCTS are proposed to solve some defeats of the standard MCTS applicating in the field of legged robot planning. The proposed planning algorithm combines the fault-tolerant gait method to improve the passability of the algorithm. Finally, compared with other planning methods, experiments on terrains with different densities of footholds and artificially-designed challenging terrain are carried out to verify our methods. All results show that the proposed method dramatically improves the hexapod robot's ability to pass through sparse footholds environment

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Doctor of Philosophy

    Get PDF
    dissertationThis thesis analyzed biped stability through a qualitative likelihood of falling and quantitative Potential to Fall (PF) analysis. Both analyses were applied to walking and skiing to better understand behaviors across a wider spectrum of bipedal gaits. For both walking and skiing, two types of locomotion were analyzed. Walking studies compared normal locomotion (gait) to an unexpected slip. Skiing studies compared wedge style locomotion (more common to beginning and intermediate skiers) to parallel style locomotion (more common to advanced and expert skiers). Two mediums of data collection were used. A motion capture laboratory with stereographic cameras and force plates were used for walking studies, and instrumented insoles, capable of force and inertial measurement, were used for skiing studies. Both kinematics and kinetics were used to evaluate the likelihood of falling. The PF metric, based on root mean squared error, was used to quantify the likelihood of falling for multiple subjects both in walking and skiing. PF was based on foot kinematics for walking and skiing studies. PF also included center of pressure for skiing studies. The PF was lower for normal gaits in walking studies and wedge style locomotion for skiing studies

    Injury and Skeletal Biomechanics

    Get PDF
    This book covers many aspects of Injury and Skeletal Biomechanics. As the title represents, the aspects of force, motion, kinetics, kinematics, deformation, stress and strain are examined in a range of topics such as human muscles and skeleton, gait, injury and risk assessment under given situations. Topics range from image processing to articular cartilage biomechanical behavior, gait behavior under different scenarios, and training, to musculoskeletal and injury biomechanics modeling and risk assessment to motion preservation. This book, together with "Human Musculoskeletal Biomechanics", is available for free download to students and instructors who may find it suitable to develop new graduate level courses and undergraduate teaching in biomechanics

    동영상 속 사람 동작의 물리 기반 재구성 및 분석

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 이제희.In computer graphics, simulating and analyzing human movement have been interesting research topics started since the 1960s. Still, simulating realistic human movements in a 3D virtual world is a challenging task in computer graphics. In general, motion capture techniques have been used. Although the motion capture data guarantees realistic result and high-quality data, there is lots of equipment required to capture motion, and the process is complicated. Recently, 3D human pose estimation techniques from the 2D video are remarkably developed. Researchers in computer graphics and computer vision have attempted to reconstruct the various human motions from video data. However, existing methods can not robustly estimate dynamic actions and not work on videos filmed with a moving camera. In this thesis, we propose methods to reconstruct dynamic human motions from in-the-wild videos and to control the motions. First, we developed a framework to reconstruct motion from videos using prior physics knowledge. For dynamic motions such as backspin, the poses estimated by a state-of-the-art method are incomplete and include unreliable root trajectory or lack intermediate poses. We designed a reward function using poses and hints extracted from videos in the deep reinforcement learning controller and learned a policy to simultaneously reconstruct motion and control a virtual character. Second, we simulated figure skating movements in video. Skating sequences consist of fast and dynamic movements on ice, hindering the acquisition of motion data. Thus, we extracted 3D key poses from a video to then successfully replicate several figure skating movements using trajectory optimization and a deep reinforcement learning controller. Third, we devised an algorithm for gait analysis through video of patients with movement disorders. After acquiring the patients joint positions from 2D video processed by a deep learning network, the 3D absolute coordinates were estimated, and gait parameters such as gait velocity, cadence, and step length were calculated. Additionally, we analyzed the optimization criteria of human walking by using a 3D musculoskeletal humanoid model and physics-based simulation. For two criteria, namely, the minimization of muscle activation and joint torque, we compared simulation data with real human data for analysis. To demonstrate the effectiveness of the first two research topics, we verified the reconstruction of dynamic human motions from 2D videos using physics-based simulations. For the last two research topics, we evaluated our results with real human data.컴퓨터 그래픽스에서 인간의 움직임 시뮬레이션 및 분석은 1960 년대부터 다루어진 흥미로운 연구 주제이다. 몇 십년 동안 활발하게 연구되어 왔음에도 불구하고, 3차원 가상 공간 상에서 사실적인 인간의 움직임을 시뮬레이션하는 연구는 여전히 어렵고 도전적인 주제이다. 그동안 사람의 움직임 데이터를 얻기 위해서 모션 캡쳐 기술이 사용되어 왔다. 모션 캡처 데이터는 사실적인 결과와 고품질 데이터를 보장하지만 모션 캡쳐를 하기 위해서 필요한 장비들이 많고, 그 과정이 복잡하다. 최근에 2차원 영상으로부터 사람의 3차원 자세를 추정하는 연구들이 괄목할 만한 결과를 보여주고 있다. 이를 바탕으로 컴퓨터 그래픽스와 컴퓨터 비젼 분야의 연구자들은 비디오 데이터로부터 다양한 인간 동작을 재구성하려는 시도를 하고 있다. 그러나 기존의 방법들은 빠르고 다이나믹한 동작들은 안정적으로 추정하지 못하며 움직이는 카메라로 촬영한 비디오에 대해서는 작동하지 않는다. 본 논문에서는 비디오로부터 역동적인 인간 동작을 재구성하고 동작을 제어하는 방법을 제안한다. 먼저 사전 물리학 지식을 사용하여 비디오에서 모션을 재구성하는 프레임 워크를 제안한다. 공중제비와 같은 역동적인 동작들에 대해서 최신 연구 방법을 동원하여 추정된 자세들은 캐릭터의 궤적을 신뢰할 수 없거나 중간에 자세 추정에 실패하는 등 불완전하다. 우리는 심층강화학습 제어기에서 영상으로부터 추출한 포즈와 힌트를 활용하여 보상 함수를 설계하고 모션 재구성과 캐릭터 제어를 동시에 하는 정책을 학습하였다. 둘 째, 비디오에서 피겨 스케이팅 기술을 시뮬레이션한다. 피겨 스케이팅 기술들은 빙상에서 빠르고 역동적인 움직임으로 구성되어 있어 모션 데이터를 얻기가 까다롭다. 비디오에서 3차원 키 포즈를 추출하고 궤적 최적화 및 심층강화학습 제어기를 사용하여 여러 피겨 스케이팅 기술을 성공적으로 시연한다. 셋 째, 파킨슨 병이나 뇌성마비와 같은 질병으로 인하여 움직임 장애가 있는 환자의 보행을 분석하기 위한 알고리즘을 제안한다. 2차원 비디오로부터 딥러닝을 사용한 자세 추정기법을 사용하여 환자의 관절 위치를 얻어낸 다음, 3차원 절대 좌표를 얻어내어 이로부터 보폭, 보행 속도와 같은 보행 파라미터를 계산한다. 마지막으로, 근골격 인체 모델과 물리 시뮬레이션을 이용하여 인간 보행의 최적화 기준에 대해 탐구한다. 근육 활성도 최소화와 관절 돌림힘 최소화, 두 가지 기준에 대해 시뮬레이션한 후, 실제 사람 데이터와 비교하여 결과를 분석한다. 처음 두 개의 연구 주제의 효과를 입증하기 위해, 물리 시뮬레이션을 사용하여 이차원 비디오로부터 재구성한 여러 가지 역동적인 사람의 동작들을 재현한다. 나중 두 개의 연구 주제는 사람 데이터와의 비교 분석을 통하여 평가한다.1 Introduction 1 2 Background 9 2.1 Pose Estimation from 2D Video . . . . . . . . . . . . . . . . . . . . 9 2.2 Motion Reconstruction from Monocular Video . . . . . . . . . . . . 10 2.3 Physics-Based Character Simulation and Control . . . . . . . . . . . 12 2.4 Motion Reconstruction Leveraging Physics . . . . . . . . . . . . . . 13 2.5 Human Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Figure Skating Simulation . . . . . . . . . . . . . . . . . . . 16 2.6 Objective Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Optimization for Human Movement Simulation . . . . . . . . . . . . 17 2.7.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Human Dynamics from Monocular Video with Dynamic Camera Movements 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Pose and Contact Estimation . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Learning Human Dynamics . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Scene Estimator . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison of Contact Estimators . . . . . . . . . . . . . . . 33 3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Figure Skating Simulation from Video 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Skating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Non-holonomic Constraints . . . . . . . . . . . . . . . . . . 46 4.3.2 Relaxation of Non-holonomic Constraints . . . . . . . . . . . 47 4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Trajectory Optimization and Control . . . . . . . . . . . . . . . . . . 50 4.5.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 50 4.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Gait Analysis Using Pose Estimation Algorithm with 2D-video of Patients 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 Patients and video recording . . . . . . . . . . . . . . . . . . 63 5.2.2 Standard protocol approvals, registrations, and patient consents 66 5.2.3 3D Pose estimation from 2D video . . . . . . . . . . . . . . . 66 5.2.4 Gait parameter estimation . . . . . . . . . . . . . . . . . . . 67 5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Validation of video-based analysis of the gait . . . . . . . . . 68 5.3.2 gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Validation with the conventional sensor-based method . . . . 75 5.4.2 Analysis of gait and turning in TUG . . . . . . . . . . . . . . 75 5.4.3 Correlation with clinical parameters . . . . . . . . . . . . . . 76 5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Control Optimization of Human Walking 80 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Musculoskeletal model . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Control co-activation level . . . . . . . . . . . . . . . . . . . 83 6.2.4 Push-recovery experiment . . . . . . . . . . . . . . . . . . . 84 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 90 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Docto

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Investigation of energy efficiency of hexapod robot locomotion

    Get PDF
    Disertacijoje nagrinėjamos vaikščiojančių robotų energijos sąnaudų problemos jiems judant lygiu ir nelygiu paviršiumi. Pagrindinis tyrimo objektas yra vaikščiojančio roboto valdymo, aplinkos atpažinimo bei kliūčių išvengimo žinomoje aplinkoje metodas. Energijos sąnaudų minimizavimas leistų praplėsti vaikščiojančių robotų pritaikymą ir veikimo laiką. Pagrindinis darbo tikslas – sukurti energijos sąnaudų minimizavimo metodus vaikščiojantiems robotams ir sukurti aplinkos atpažinimo ir klasifikavimo metodus bei ištirti šešiakojo roboto energijos sąnaudas jiems judant žinomoje aplinkoje. Šie metodai gali būti taikomi vaikščiojantiems daugiakojams robotams. Darbe sprendžiami šie uždaviniai: šešiakojo roboto eisenos parinkimas atsižvelgiant į energijos sąnaudas, paviršiaus kliūčių aptikimo ir perlipimo metodų sudarymas ir jų efektyvumo palyginimas. Taip pat sprendžiami uždaviniai, kurie siejasi su pėdų trajektorijos generavimo metodo kūrimu bei kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertaciją sudaro įvadas, trys skyriai, bendrosios išvados, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvade aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir pranešimai konferencijose bei disertacijos struktūra. Pirmasis skyrius skirtas literatūros apžvalgai. Jame pateikta mobiliųjų robotų energetinio efektyvumo bei energijos sąnaudų matavimo, skaičiavimo ir optimizavimo metodų analizė. Antrajame skyriuje pateiktas energetiškai efektyvaus judėjimo metodikos sudarymas vaikščiojantiems robotams. Šiame skyriuje pateiktas šešiakojo roboto matematinio ir fizinio modelių sudarymas, nelygaus paviršiaus klasifikavimo modelio sudarymas bei taktilinio kliūčių aptikimo bei perlipimo metodų sudarymas. Skyriaus gale pateikiamos išvados. Trečiajame skyriuje tiriamos energijos sąnaudų priklausomybės nuo roboto eisenos bei judėjimo parametrų, kliūčių aptikimo ir perlipimo tikslumas priklausomai nuo kliūčių skaičiaus roboto kelyje, taip pat kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertacijos tema paskelbti 9 straipsniai: keturi – Clarivate Analytics Web of Science duomenų bazės leidiniuose, turinčiuose citavimo rodiklį, trys – Clarivate Analytics Web of Science duomenų bazės „Conference Proceedings“ leidiniuose ir du – kituose recenzuojamuose mokslo leidiniuose. Disertacijos tema perskaityti 7 pranešimai konferencijose Lietuvoje bei kitose šalyse

    屋外調査用自律移動型ロボットの不整地移動性能

    Get PDF
    早大学位記番号:新7829早稲田大

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective
    corecore