111 research outputs found

    Learning from imbalanced data in face re-identification using ensembles of classifiers

    Get PDF
    Face re-identification is a video surveillance application where systems for video-to-video face recognition are designed using faces of individuals captured from video sequences, and seek to recognize them when they appear in archived or live videos captured over a network of video cameras. Video-based face recognition applications encounter challenges due to variations in capture conditions such as pose, illumination etc. Other challenges in this application are twofold; 1) the imbalanced data distributions between the face captures of the individuals to be re-identified and those of other individuals 2) varying degree of imbalance during operations w.r.t. the design data. Learning from imbalanced data is challenging in general due in part to the bias of performance in most two-class classification systems towards correct classification of the majority (negative, or non-target) class (face images/frames captured from the individuals in not to be re-identified) better than the minority (positive, or target) class (face images/frames captured from the individual to be re-identified) because most two-class classification systems are intended to be used under balanced data condition. Several techniques have been proposed in the literature to learn from imbalanced data that either use data-level techniques to rebalance data (by under-sampling the majority class, up-sampling the minority class, or both) for training classifiers or use algorithm-level methods to guide the learning process (with or without cost sensitive approaches) such that the bias of performance towards correct classification of the majority class is neutralized. Ensemble techniques such as Bagging and Boosting algorithms have been shown to efficiently utilize these methods to address imbalance. However, there are issues faced by these techniques in the literature: (1) some informative samples may be neglected by random under-sampling and adding synthetic positive samples through upsampling adds to training complexity, (2) cost factors must be pre-known or found, (3) classification systems are often optimized and compared using performance measurements (like accuracy) that are unsuitable for imbalance problem; (4) most learning algorithms are designed and tested on a fixed imbalance level of data, which may differ from operational scenarios; The objective of this thesis is to design specialized classifier ensembles to address the issue of imbalance in the face re-identification application and as sub-goals avoiding the abovementioned issues faced in the literature. In addition achieving an efficient classifier ensemble requires a learning algorithm to design and combine component classifiers that hold suitable diversity-accuracy trade off. To reach the objective of the thesis, four major contributions are made that are presented in three chapters summarized in the following. In Chapter 3, a new application-based sampling method is proposed to group samples for under-sampling in order to improve diversity-accuracy trade-off between classifiers of the ensemble. The proposed sampling method takes the advantage of the fact that in face re-identification applications, facial regions of a same person appearing in a camera field of view may be regrouped based on their trajectories found by face tracker. A partitional Bagging ensemble method is proposed that accounts for possible variations in imbalance level of the operational data by combining classifiers that are trained on different imbalance levels. In this method, all samples are used for training classifiers and information loss is therefore avoided. In Chapter 4, a new ensemble learning algorithm called Progressive Boosting (PBoost) is proposed that progressively inserts uncorrelated groups of samples into a Boosting procedure to avoid loosing information while generating a diverse pool of classifiers. From one iteration to the next, the PBoost algorithm accumulates these uncorrelated groups of samples into a set that grows gradually in size and imbalance. This algorithm is more sophisticated than the one proposed in Chapter 3 because instead of training the base classifiers on this set, the base classifiers are trained on balanced subsets sampled from this set and validated on the whole set. Therefore, the base classifiers are more accurate while the robustness to imbalance is not jeopardized. In addition, the sample selection is based on the weights that are assigned to samples which correspond to their importance. In addition, the computation complexity of PBoost is lower than Boosting ensemble techniques in the literature for learning from imbalanced data because not all of the base classifiers are validated on all negative samples. A new loss factor is also proposed to be used in PBoost to avoid biasing performance towards the negative class. Using this loss factor, the weight update of samples and classifier contribution in final predictions are set according to the ability of classifiers to recognize both classes. In comparing the performance of the classifier systems in Chapter 3 and 4, a need is faced for an evaluation space that compares classifiers in terms of a suitable performance metric over all of their decision thresholds, different imbalance levels of test data, and different preference between classes. The F-measure is often used to evaluate two-class classifiers on imbalanced data, and no global evaluation space was available in the literature for this measure. Therefore, in Chapter 5, a new global evaluation space for the F-measure is proposed that is analogous to the cost curves for expected cost. In this space, a classifier is represented as a curve that shows its performance over all of its decision thresholds and a range of possible imbalance levels for the desired preference of true positive rate to precision. These properties are missing in ROC and precision-recall spaces. This space also allows us to empirically improve the performance of specialized ensemble learning methods for imbalance under a given operating condition. Through a validation, the base classifiers are combined using a modified version of the iterative Boolean combination algorithm such that the selection criterion in this algorithm is replaced by F-measure instead of AUC, and the combination is carried out for each operating condition. The proposed approaches in this thesis were validated and compared using synthetic data and videos from the Faces In Action, and COX datasets that emulate face re-identification applications. Results show that the proposed techniques outperforms state of the art techniques over different levels of imbalance and overlap between classes

    Adaptive multi-classifier systems for face re-identification applications

    Get PDF
    In video surveillance, decision support systems rely more and more on face recognition (FR) to rapidly determine if facial regions captured over a network of cameras correspond to individuals of interest. Systems for FR in video surveillance are applied in a range of scenarios, for instance in watchlist screening, face re-identification, and search and retrieval. The focus of this Thesis is video-to-video FR, as found in face re-identification applications, where facial models are designed on reference data, and update is archived on operational captures from video streams. Several challenges emerge from the task of recognizing individuals of interest from faces captured with video cameras. Most notably, it is often assumed that the facial appearance of target individuals do not change over time, and the proportions of faces captured for target and non-target individuals are balanced, known a priori and remain fixed. However, faces captured during operations vary due to several factors, including illumination, blur, resolution, pose expression, and camera interoperability. In addition, facial models used matching are commonly not representative since they are designed a priori, with a limited amount of reference samples that are collected and labeled at a high cost. Finally, the proportions of target and non-target individuals continuously change during operations. In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to video-to-video FR, where the facial model for each target individual is designed using an ensemble of 2-class classifiers (trained using target vs. non-target reference samples). Recent approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently proposed to adapt the fusion function of an ensemble according to class imbalance measured on operational data. These active approaches estimate target vs. non-target proportions periodically during operations distance, and the fusion of classifier ensembles are adapted to such imbalance. Finally, face tracking can be used to regroup the system responses linked to a facial trajectory (facial captures from a single person in the scene) for robust spatio-temporal recognition, and to update facial models over time using operational data. In this Thesis, new techniques are proposed to adapt the facial models for individuals enrolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update the system, considering gradual and abrupt changes in the classification environment. Then, skew-sensitive ensembles are proposed to adapt the system to the operational imbalance. In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial models over time based on facial trajectories. During operations, information from a face tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition and for self-update of facial models. The tracker defines a facial trajectory for each individual in video. Recognition of a target individual is done if the positive predictions accumulated along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive predictions surpass a higher update threshold, then all target face samples from the trajectory are combined with non-target samples (selected from the cohort and universal models) to update the corresponding facial model. A learn-and-combine strategy is employed to avoid knowledge corruption during self-update of ensembles. In addition, a memory management strategy based on Kullback-Leibler divergence is proposed to rank and select the most relevant target and non-target reference samples to be stored in memory as the ensembles evolves. The proposed system was validated with synthetic data and real videos from Face in Action dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for supervised learning of ensembles, and videos from three capture sessions were presented to the system for FR and self-update. Transaction-level analysis shows that the proposed approach outperforms baseline systems that do not adapt to new trajectories, and provides comparable performance to ideal systems that adapt to all relevant target trajectories, through supervised learning. Subject-level analysis reveals the existence of individuals for which self-updated ensembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-temporal video-to-video FR. In Chapter 3, an extension and a particular implementation of the ensemble-based system for spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt changes in the classification environment. Transaction-level results show that the proposed system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of FR with different poses, affecting more significantly the lamb- and goat-like individuals. Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme produces the highest discrimination. In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained by selecting data with varying levels of imbalance and complexity, to sustain a high level the performance for video-to-video FR. During operations, the level of imbalance is periodically estimated from the input trajectories using the HDx quantification method, and pre-computed histogram representations of imbalanced data distributions. Ensemble scores are accumulated of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data show that adapting the fusion function with the proposed approach can significantly improve performance. Results on real data show that the proposed method can outperform reference techniques in imbalanced video surveillance environments

    Breaking Down the Barriers To Operator Workload Estimation: Advancing Algorithmic Handling of Temporal Non-Stationarity and Cross-Participant Differences for EEG Analysis Using Deep Learning

    Get PDF
    This research focuses on two barriers to using EEG data for workload assessment: day-to-day variability, and cross- participant applicability. Several signal processing techniques and deep learning approaches are evaluated in multi-task environments. These methods account for temporal, spatial, and frequential data dependencies. Variance of frequency- domain power distributions for cross-day workload classification is statistically significant. Skewness and kurtosis are not significant in an environment absent workload transitions, but are salient with transitions present. LSTMs improve day- to-day feature stationarity, decreasing error by 59% compared to previous best results. A multi-path convolutional recurrent model using bi-directional, residual recurrent layers significantly increases predictive accuracy and decreases cross-participant variance. Deep learning regression approaches are applied to a multi-task environment with workload transitions. Accounting for temporal dependence significantly reduces error and increases correlation compared to baselines. Visualization techniques for LSTM feature saliency are developed to understand EEG analysis model biases

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Towards adaptive anomaly detection systems using boolean combination of hidden Markov models

    Get PDF
    Anomaly detection monitors for significant deviations from normal system behavior. Hidden Markov Models (HMMs) have been successfully applied in many intrusion detection applications, including anomaly detection from sequences of operating system calls. In practice, anomaly detection systems (ADSs) based on HMMs typically generate false alarms because they are designed using limited representative training data and prior knowledge. However, since new data may become available over time, an important feature of an ADS is the ability to accommodate newly-acquired data incrementally, after it has originally been trained and deployed for operations. Incremental re-estimation of HMM parameters raises several challenges. HMM parameters should be updated from new data without requiring access to the previously-learned training data, and without corrupting previously-learned models of normal behavior. Standard techniques for training HMM parameters involve iterative batch learning, and hence must observe the entire training data prior to updating HMM parameters. Given new training data, these techniques must restart the training procedure using all (new and previously-accumulated) data. Moreover, a single HMM system for incremental learning may not adequately approximate the underlying data distribution of the normal process, due to the many local maxima in the solution space. Ensemble methods have been shown to alleviate knowledge corruption, by combining the outputs of classifiers trained independently on successive blocks of data. This thesis makes contributions at the HMM and decision levels towards improved accuracy, efficiency and adaptability of HMM-based ADSs. It first presents a survey of techniques found in literature that may be suitable for incremental learning of HMM parameters, and assesses the challenges faced when these techniques are applied to incremental learning scenarios in which the new training data is limited and abundant. Consequently, An efficient alternative to the Forward-Backward algorithm is first proposed to reduce the memory complexity without increasing the computational overhead of HMM parameters estimation from fixed-size abundant data. Improved techniques for incremental learning of HMM parameters are then proposed to accommodate new data over time, while maintaining a high level of performance. However, knowledge corruption caused by a single HMM with a fixed number of states remains an issue. To overcome such limitations, this thesis presents an efficient system to accommodate new data using a learn-and-combine approach at the decision level. When a new block of training data becomes available, a new pool of base HMMs is generated from the data using a different number of HMM states and random initializations. The responses from the newly-trained HMMs are then combined to those of the previously-trained HMMs in receiver operating characteristic (ROC) space using novel Boolean combination (BC) techniques. The learn-and-combine approach allows to select a diversified ensemble of HMMs (EoHMMs) from the pool, and adapts the Boolean fusion functions and thresholds for improved performance, while it prunes redundant base HMMs. The proposed system is capable of changing its desired operating point during operations, and this point can be adjusted to changes in prior probabilities and costs of errors. During simulations conducted for incremental learning from successive data blocks using both synthetic and real-world system call data sets, the proposed learn-and-combine approach has been shown to achieve the highest level of accuracy than all related techniques. In particular, it can sustain a significantly higher level of accuracy than when the parameters of a single best HMM are re-estimated for each new block of data, using the reference batch learning and the proposed incremental learning techniques. It also outperforms static fusion techniques such as majority voting for combining the responses of new and previously-generated pools of HMMs. Ensemble selection techniques have been shown to form compact EoHMMs for operations, by selecting diverse and accurate base HMMs from the pool while maintaining or improving the overall system accuracy. Pruning has been shown to prevents pool sizes from increasing indefinitely with the number of data blocks acquired over time. Therefore, the storage space for accommodating HMMs parameters and the computational costs of the selection techniques are reduced, without negatively affecting the overall system performance. The proposed techniques are general in that they can be employed to adapt HMM-based systems to new data, within a wide range of application domains. More importantly, the proposed Boolean combination techniques can be employed to combine diverse responses from any set of crisp or soft one- or two-class classifiers trained on different data or features or trained according to different parameters, or from different detectors trained on the same data. In particular, they can be effectively applied when training data is limited and test data is imbalanced

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks
    corecore