368 research outputs found

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    Advanced Timing and Synchronization Methodologies for Digital VLSI Integrated Circuits

    Get PDF
    This dissertation addresses timing and synchronization methodologies that are critical to the design, analysis and optimization of high-performance, integrated digital VLSI systems. As process sizes shrink and design complexities increase, achieving timing closure for digital VLSI circuits becomes a significant bottleneck in the integrated circuit design flow. Circuit designers are motivated to investigate and employ alternative methods to satisfy the timing and physical design performance targets. Such novel methods for the timing and synchronization of complex circuitry are developed in this dissertation and analyzed for performance and applicability.Mainstream integrated circuit design flow is normally tuned for zero clock skew, edge-triggered circuit design. Non-zero clock skew or multi-phase clock synchronization is seldom used because the lack of design automation tools increases the length and cost of the design cycle. For similar reasons, level-sensitive registers have not become an industry standard despite their superior size, speed and power consumption characteristics compared to conventional edge-triggered flip-flops.In this dissertation, novel design and analysis techniques that fully automate the design and analysis of non-zero clock skew circuits are presented. Clock skew scheduling of both edge-triggered and level-sensitive circuits are investigated in order to exploit maximum circuit performances. The effects of multi-phase clocking on non-zero clock skew, level-sensitive circuits are investigated leading to advanced synchronization methodologies. Improvements in the scalability of the computational timing analysis process with clock skew scheduling are explored through partitioning and parallelization.The integration of the proposed design and analysis methods to the physical design flow of integrated circuits synchronized with a next-generation clocking technology-resonant rotary clocking technology-is also presented. Based on the design and analysis methods presented in this dissertation, a computer-aided design tool for the design of rotary clock synchronized integrated circuits is developed

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Store-and-forward CDC packet transmission in digital systems

    Get PDF
    Data transmission across clock domains is a major point of interest by ASIC designers as a limited bandwidth can be responsible for a processing power bottleneck that affects the entire system. Clock domain crossing is inherently expensive in terms of area and latency as it requires overcoming issues related to the physical nature of integrated circuit latches, in particular metastability. These issues are dangerous as they do not manifest in RTL simulation. Due to this, designers often opt for generic data synchronisation solutions that are not fully suited to the nature of the data being transferred.This dissertation presents a clock domain crossing mechanism that allows two clock domains to share a common memory to transfer packet-based data. The mechanism consists in a memory controller that coordinates commands from a push (write) domain and a pop (read) domain.The main objective of the memory controller project consists in the implementation of efficient synchronisation methods in order to eliminate the need for separate synchronisation and storage memories. In essence, the controller is an extension of an asynchronous FIFO controller with added functionality, supporting multiple virtual FIFOs and variable length data packets

    A general-purpose pulse sequencer for quantum computing

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 165-170).Quantum mechanics presents a more general and potentially more powerful model of computation than classical systems. Quantum bits have many physically different representations which nonetheless share a common need for modulating pulses of electromagnetic waves. This thesis presents the design and evaluates the implementation of a general-purpose sequencer which supports fast, programmable pulses; a flexible, open design; and feedback operation for adaptive algorithms. The sequencer achieves a timing resolution, minimum pulse duration, and minimum delay of 10 nanoseconds; it has 64 simultaneously-switching, independent digital outputs and 8 digital inputs for triggering or feedback. Multiple devices can operate in a daisy chain to facilitate adding and removing channels. An FPGA is used to implement a firmware network stack and a specialized pulse processor core whose modules are all interconnected using the Wishbone bus standard. Users can write pulse programs in an assembly language and control the device from a host computer over an Ethernet network. An embedded web server provides an intuitive, graphical user interface, while a non-interactive, efficient UDP protocol provides programmatic access to third-party software. The performance characteristics, tolerances, and cost of the device are measured and compared with those of contemporary research and commercial offerings. Future improvements and extensions are suggested. All circuit schematics, PCB layouts, source code, and design documents are released under an open source license.by Paul Tân Thế Phạm.M.Eng

    Design and implementation of gallium arsenide digital integrated circuits

    Get PDF

    Gallium arsenide bit-serial integrated circuits

    Get PDF
    corecore