2,015 research outputs found

    Geometry of all supersymmetric type I backgrounds

    Get PDF
    We find the geometry of all supersymmetric type I backgrounds by solving the gravitino and dilatino Killing spinor equations, using the spinorial geometry technique, in all cases. The solutions of the gravitino Killing spinor equation are characterized by their isotropy group in Spin(9,1), while the solutions of the dilatino Killing spinor equation are characterized by their isotropy group in the subgroup Sigma(P) of Spin(9,1) which preserves the space of parallel spinors P. Given a solution of the gravitino Killing spinor equation with L parallel spinors, L = 1,2,3,4,5,6,8, the dilatino Killing spinor equation allows for solutions with N supersymmetries for any 0 < N =< L. Moreover for L = 16, we confirm that N = 8,10,12,14,16. We find that in most cases the Bianchi identities and the field equations of type I backgrounds imply a further reduction of the holonomy of the supercovariant connection. In addition, we show that in some cases if the holonomy group of the supercovariant connection is precisely the isotropy group of the parallel spinors, then all parallel spinors are Killing and so there are no backgrounds with N < L supersymmetries.Comment: 73 pages. v2: minor changes, references adde

    The Geometry of D=11 Null Killing Spinors

    Full text link
    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008.Comment: 30 pages, typos corrected, reference added, new solution included in section 5.1; uses JHEP3.cl

    New directions in enumerative chess problems

    Get PDF
    Normally a chess problem must have a unique solution, and is deemed unsound even if there are alternatives that differ only in the order in which the same moves are played. In an enumerative chess problem, the set of moves in the solution is (usually) unique but the order is not, and the task is to count the feasible permutations via an isomorphic problem in enumerative combinatorics. Almost all enumerative chess problems have been ``series-movers'', in which one side plays an uninterrupted series of moves, unanswered except possibly for one move by the opponent at the end. This can be convenient for setting up enumeration problems, but we show that other problem genres also lend themselves to composing enumerative problems. Some of the resulting enumerations cannot be shown (or have not yet been shown) in series-movers. This article is based on a presentation given at the banquet in honor of Richard Stanley's 60th birthday, and is dedicated to Stanley on this occasion.Comment: 14 pages, including many chess diagrams created with the Tutelaers font

    Topology of Exceptional Orbit Hypersurfaces of Prehomogeneous Spaces

    Get PDF
    We consider the topology for a class of hypersurfaces with highly nonisolated singularites which arise as exceptional orbit varieties of a special class of prehomogeneous vector spaces, which are representations of linear algebraic groups with open orbits. These hypersurface singularities include both determinantal hypersurfaces and linear free (and free*) divisors. Although these hypersurfaces have highly nonisolated singularities, we determine the topology of their Milnor fibers, complements and links. We do so by using the action of linear algebraic groups beginning with the complement, instead of using Morse type arguments on the Milnor fibers. This includes replacing the local Milnor fiber by a global Milnor fiber which has a complex geometry resulting from a transitive action of an appropriate algebraic group, yielding a compact model submanifold for the homotopy type of the Milnor fiber. The topology includes the (co)homology (in characteristic 0, and 2 torsion in one family) and homotopy groups, and we deduce the triviality of the monodromy transformations on rational (or complex) cohomology. The cohomology of the Milnor fibers and complements are isomorphic as algebras to exterior algebras or for one family, modules over exterior algebras; and cohomology of the link is, as a vector space, a truncated and shifted exterior algebra, for which the cohomology product structure is essentially trivial. We also deduce from Bott's periodicity theorem, the homotopy groups of the Milnor fibers for determinantal hypersurfaces in the stable range as the stable homotopy groups of the associated infinite dimensional symmetric spaces. Applying a Theorem of Oka we obtain a class of formal linear combinations of exceptional orbit hypersurfaces which have Milnor fibers which are homotopy equivalent to joins of the compact model submanifolds.Comment: to appear in the Journal of Topolog

    Three-Dimensional Manifolds, Skew-Gorenstein Rings and their Cohomology

    Full text link
    Graded skew-commutative rings occur often in practice. Here are two examples: 1) The cohomology ring of a compact three-dimensional manifold. 2) The cohomology ring of the complement of a hyperplane arrangement (the Orlik-Solomon algebra). We present some applications of the homological theory of these graded skew-commutative rings. In particular we find compact oriented 3-manifolds without boundary for which the Hilbert series of the Yoneda Ext-algebra of the cohomology ring of the fundamental group is an explicit transcendental function. This is only possible for large first Betti numbers of the 3-manifold (bigger than -- or maybe equal to -- 11). We give also examples of 3-manifolds where the Ext-algebra of the cohomology ring of the fundamental group is not finitely generated.Comment: 21 page
    • 

    corecore