9,218 research outputs found

    Shape exploration in design : formalising and supporting a transformational process

    Get PDF
    The process of sketching can support the sort of transformational thinking that is seen as essential for the interpretation and reinterpretation of ideas in innovative design. Such transformational thinking, however, is not yet well supported by computer-aided design systems. In this paper, outcomes of experimental investigations into the mechanics of sketching are described, in particular those employed by practising architects and industrial designers as they responded to a series of conceptual design tasks,. Analyses of the experimental data suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules. A set of shape rules, formalising the reinterpretation and transformations of shapes, e.g. through deformation or restructuring, are presented. These rules are suggestive of the manipulations that need to be afforded in computational tools intended to support designers in design exploration. Accordingly, the results of the experimental investigations informed the development of a prototype shape synthesis system, and a discussion is presented in which the future requirements of such systems are explored

    Intelligent computational sketching support for conceptual design

    Get PDF
    Sketches, with their flexibility and suggestiveness, are in many ways ideal for expressing emerging design concepts. This can be seen from the fact that the process of representing early designs by free-hand drawings was used as far back as in the early 15th century [1]. On the other hand, CAD systems have become widely accepted as an essential design tool in recent years, not least because they provide a base on which design analysis can be carried out. Efficient transfer of sketches into a CAD representation, therefore, is a powerful addition to the designers' armoury.It has been pointed out by many that a pen-on-paper system is the best tool for sketching. One of the crucial requirements of a computer aided sketching system is its ability to recognise and interpret the elements of sketches. 'Sketch recognition', as it has come to be known, has been widely studied by people working in such fields: as artificial intelligence to human-computer interaction and robotic vision. Despite the continuing efforts to solve the problem of appropriate conceptual design modelling, it is difficult to achieve completely accurate recognition of sketches because usually sketches implicate vague information, and the idiosyncratic expression and understanding differ from each designer

    A profile-driven sketching interface for pen-and-paper sketches

    Get PDF
    This research is funded by the University of Malta under the research grant R30 31330 and is part of the project Innovative ‘Early Design’ Product Prototyping (InPro).Sketching interface tools are developed to allow designers to benefit from the powerful computational tools avail- able in computer aided design systems. However, despite the number of sketching tools such as PDAs and Tablet PCs available on market, designers typically create a number of initial conceptual ideas using paper-based sketches and scribbles such that these tools remain inaccessible to designers in the early design stages. In this paper we describe a profile-driven, paper-based sketching interface which infers the 3D geometry of objects drawn by designers using the traditional pen and paper sketching. We show that by making full use of the shape information present in the scribbled drawing, it is possible to obtain a paper-based sketching interface that retains the simplicity of the early- stage design drawings while allowing for the modeling of a variety of object shapes.peer-reviewe

    Free form sketching system for product design using virtual reality technology

    Get PDF
    Computer Aided Design (CAD) systems are inadequate for conceptual design process particularly for sketching. Conventional paper sketching is commonly used for catching the initial inspirational imagination of designers. It is difficult for designers and decision-makers to understand stereoscopic impressions with a two-dimensional (2D) representation. Yet, such designs require a time-consuming process to replicate 2D sketches in computer, in three-dimensional (3D) form using one of the available CAD software. Hence, the demand for a system where the initial design process is performed directly in computer so that the design modifications and the format changes can be done efficiently has been increasing among designers. In this thesis, a free form conceptual design system that allows designers to perform conceptual design directly in computer is introduced. In this method, surfaces of products are created and modified directly and intuitively through control points in 3D space. The artist performs the design process freely and unconstraintly in 3D space by operating his/her hands wearing data gloves. In our system, conceptual design is simply realized in computer

    Shape matching and clustering in design

    Get PDF
    Generalising knowledge and matching patterns is a basic human trait in re-using past experiences. We often cluster (group) knowledge of similar attributes as a process of learning and or aid to manage the complexity and re-use of experiential knowledge [1, 2]. In conceptual design, an ill-defined shape may be recognised as more than one type. Resulting in shapes possibly being classified differently when different criteria are applied. This paper outlines the work being carried out to develop a new technique for shape clustering. It highlights the current methods for analysing shapes found in computer aided sketching systems, before a method is proposed that addresses shape clustering and pattern matching. Clustering for vague geometric models and multiple viewpoint support are explored

    Shape matching and clustering

    Get PDF
    Generalising knowledge and matching patterns is a basic human trait in re-using past experiences. We often cluster (group) knowledge of similar attributes as a process of learning and or aid to manage the complexity and re-use of experiential knowledge [1, 2]. In conceptual design, an ill-defined shape may be recognised as more than one type. Resulting in shapes possibly being classified differently when different criteria are applied. This paper outlines the work being carried out to develop a new technique for shape clustering. It highlights the current methods for analysing shapes found in computer aided sketching systems, before a method is proposed that addresses shape clustering and pattern matching. Clustering for vague geometric models and multiple viewpoint support are explored

    CAD vs. Sketching: An Exploratory Case Study

    Get PDF
    This paper presents a preliminary comparison between the role of computer-aided design (CAD) and sketching in engineering through a case study of a senior design project and interviews with industry and academia. The design team consisted of four senior level mechanical engineering students each with less than 1 year of professional experience are observed while completing an industry sponsored mechanical engineering capstone design project across a 17 week semester. Factors investigated include what CAD tools are used, when in the design process they are implemented, the justification for their use from the students\u27 perspectives, the actual knowledge gained from their use, the impact on the final designed artifact, and the contributions of any sketches generated. At each design step, comparisons are made between CAD and sketching. The students implemented CAD tools at the onset of the project, generally failing to realize gains in design efficiency or effectiveness in the early conceptual phases of the design process. As the design became more concrete, the team was able to recognize clear gains in both efficiency and effectiveness through the use of computer assisted design programs. This study is augmented by interviews with novice and experienced industry users and academic instructors to align the trends observed in the case study with industry practice and educational emphasis. A disconnect in the perceived capability of CAD tools was found between novice and experienced user groups. Opinions on the importance of sketching skills differed between novice educators and novice industry professionals, suggesting that there is a change of opinion as to the importance of sketching formed when recent graduates transition from academia to industry. The results suggest that there is a need to emphasize the importance of sketching and a deeper understanding as to the true utility of CAD tools at each stage of the design process

    Supporting reinterpretation in computer-aided conceptual design

    Get PDF
    This paper presents research that aims to inform the development of computational tools that better support design exploration and idea transformation - key objectives in conceptual design. Analyses of experimental data from two fields - product design and architecture - suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules defined within a shape grammar. Such rules can provide a basis for the generation of alternative design concepts and they have informed the development of a prototype shape synthesis system that supports dynamic reinterpretation of shapes in design activity. The notion of 'sub-shapes' is introduced and the significance of these to perception, recognition and the development of emergent structures is discussed. The paper concludes with some speculation on how such a system might find application in a range of design fields
    • 

    corecore