1,726 research outputs found

    Randomized Riemannian Preconditioning for Orthogonality Constrained Problems

    Get PDF
    Optimization problems with (generalized) orthogonality constraints are prevalent across science and engineering. For example, in computational science they arise in the symmetric (generalized) eigenvalue problem, in nonlinear eigenvalue problems, and in electronic structures computations, to name a few problems. In statistics and machine learning, they arise, for example, in canonical correlation analysis and in linear discriminant analysis. In this article, we consider using randomized preconditioning in the context of optimization problems with generalized orthogonality constraints. Our proposed algorithms are based on Riemannian optimization on the generalized Stiefel manifold equipped with a non-standard preconditioned geometry, which necessitates development of the geometric components necessary for developing algorithms based on this approach. Furthermore, we perform asymptotic convergence analysis of the preconditioned algorithms which help to characterize the quality of a given preconditioner using second-order information. Finally, for the problems of canonical correlation analysis and linear discriminant analysis, we develop randomized preconditioners along with corresponding bounds on the relevant condition number

    Practical sketching algorithms for low-rank matrix approximation

    Get PDF
    This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data

    Algorithms for â„“p Low Rank Approximation

    Get PDF
    We consider the problem of approximating a given matrix by a low-rank matrix so as to minimize the entry-wise ℓp-approximation error, for any P ≥ 1; the case p = 2 is the classical SVD problem. We obtain the first provably good approximation algorithms for this version of low-rank approximation that work for every value of p ≥ 1, including p = σ. Our algorithms are simple, easy to implement, work well in practice, and illustrate interesting tradeoffs between the approximation quality, the running time, and the rank of the approximating matrix
    • …
    corecore