15,982 research outputs found

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201

    Sketchy rendering for information visualization

    Get PDF
    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visual- ization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users’ ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization de- sign. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method

    Synchrotron-based visualization and segmentation of elastic lamellae in the mouse carotid artery during quasi-static pressure inflation

    Get PDF
    This dataset contains images that were obtained during quasi-static pressure inflation of mouse carotid arteries. Images were taken with phase propagation imaging at the X02DA TOMCAT beamline of the Swiss Light Source synchrotron at the Paul Scherrer Institute in Villigen, Switzerland. Scans of n=12 left carotid arteries (n-6 Apoe-deficient mice, n=6 wild-type mice, all on a C57Bl6J background) were taken at pressure levels of 0, 10, 20, 30, 40, 50, 70, 90 and 120 mmHg. For analysis we selected 75 images from the center of each stack (starting at the center of the stack, and skipping 2 of every three images in both cranial and caudal axial directions) for each sample and for each pressure level, resulting in a total of 75 x 12 x 9 = 8100 analyzed images from 108 different scans. Segmentation, 3D visualization and geometric analysis is presented in the corresponding manuscript. Files are uploaded in 16bit .tif format and are named: mouseid_pressurelevel_stacknumber, with mouseid consisting of either Apoe (Apoe-deficient) or Bl (wild-type) and the mouse number, pressurelevel varies from P0 to P120 and stacknumber indicates which image from the stack has been uploaded

    Direct numerical simulation of a turbulent flow over an axisymmetric hill

    Get PDF
    Direct numerical simulation (DNS) of a turbulent flow over an axisymmetric hill has been carried out to study the three-dimensional flow separation and reattachment that occur on the lee-side of the geometry. The flow Reynolds number is ReH = 6500, based on free-stream quantities and hill height (H). A synthetic inflow boundary condition, combined with a data feed-in method, has been used to generate the turbulent boundary layer approaching to the hill. The simulation has been run using a typical DNS resolution of Dxþ ¼ 12:5; Dzþ ¼ 6:5, and Dyþ1 ¼ 1:0 and about 10 points in the viscous sublayer. It was found that a separation bubble exists at the foot of the wind-side of the hill and the incoming turbulent boundary layer flow undergoes re-laminarization process around the crest of the hill. These lead to a significant flow separation at the lee-side of the hill, where a very large primary separation bubble embedded with a smaller secondary separations have been captured. The present low-Re simulation reveals some flow features that are not observed by high-Re experiments, thus is useful for future experimental studies
    corecore