401 research outputs found

    Multilevel Skeletonization Using Local Separators

    Get PDF

    A Geometric Approach for Deciphering Protein Structure from Cryo-EM Volumes

    Get PDF
    Electron Cryo-Microscopy or cryo-EM is an area that has received much attention in the recent past. Compared to the traditional methods of X-Ray Crystallography and NMR Spectroscopy, cryo-EM can be used to image much larger complexes, in many different conformations, and under a wide range of biochemical conditions. This is because it does not require the complex to be crystallisable. However, cryo-EM reconstructions are limited to intermediate resolutions, with the state-of-the-art being 3.6A, where secondary structure elements can be visually identified but not individual amino acid residues. This lack of atomic level resolution creates new computational challenges for protein structure identification. In this dissertation, we present a suite of geometric algorithms to address several aspects of protein modeling using cryo-EM density maps. Specifically, we develop novel methods to capture the shape of density volumes as geometric skeletons. We then use these skeletons to find secondary structure elements: SSEs) of a given protein, to identify the correspondence between these SSEs and those predicted from the primary sequence, and to register high-resolution protein structures onto the density volume. In addition, we designed and developed Gorgon, an interactive molecular modeling system, that integrates the above methods with other interactive routines to generate reliable and accurate protein backbone models

    Generating Second Order (Co)homological Information within AT-Model Context

    Get PDF
    In this paper we design a new family of relations between (co)homology classes, working with coefficients in a field and starting from an AT-model (Algebraic Topological Model) AT(C) of a finite cell complex C These relations are induced by elementary relations of type “to be in the (co)boundary of” between cells. This high-order connectivity information is embedded into a graph-based representation model, called Second Order AT-Region-Incidence Graph (or AT-RIG) of C. This graph, having as nodes the different homology classes of C, is in turn, computed from two generalized abstract cell complexes, called primal and dual AT-segmentations of C. The respective cells of these two complexes are connected regions (set of cells) of the original cell complex C, which are specified by the integral operator of AT(C). In this work in progress, we successfully use this model (a) in experiments for discriminating topologically different 3D digital objects, having the same Euler characteristic and (b) in designing a parallel algorithm for computing potentially significant (co)homological information of 3D digital objects.Ministerio de Economía y Competitividad MTM2016-81030-PMinisterio de Economía y Competitividad TEC2012-37868-C04-0

    A fast approximate skeleton with guarantees for any cloud of points in a Euclidean space

    Get PDF
    The tree reconstruction problem is to find an embedded straight-line tree that approximates a given cloud of unorganized points in Rm\mathbb{R}^m up to a certain error. A practical solution to this problem will accelerate a discovery of new colloidal products with desired physical properties such as viscosity. We define the Approximate Skeleton of any finite point cloud CC in a Euclidean space with theoretical guarantees. The Approximate Skeleton ASk(C)(C) always belongs to a given offset of CC, i.e. the maximum distance from CC to ASk(C)(C) can be a given maximum error. The number of vertices in the Approximate Skeleton is close to the minimum number in an optimal tree by factor 2. The new Approximate Skeleton of any unorganized point cloud CC is computed in a near linear time in the number of points in CC. Finally, the Approximate Skeleton outperforms past skeletonization algorithms on the size and accuracy of reconstruction for a large dataset of real micelles and random clouds

    Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

    Get PDF
    Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26- connected components of I. In addition, we define the weight of an edge (R, S) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs. An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.Ministerio de Economía y Competitividad MTM2016-81030-

    The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone

    Full text link
    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization

    Geometry-Driven Detection, Tracking and Visual Analysis of Viscous and Gravitational Fingers

    Full text link
    Viscous and gravitational flow instabilities cause a displacement front to break up into finger-like fluids. The detection and evolutionary analysis of these fingering instabilities are critical in multiple scientific disciplines such as fluid mechanics and hydrogeology. However, previous detection methods of the viscous and gravitational fingers are based on density thresholding, which provides limited geometric information of the fingers. The geometric structures of fingers and their evolution are important yet little studied in the literature. In this work, we explore the geometric detection and evolution of the fingers in detail to elucidate the dynamics of the instability. We propose a ridge voxel detection method to guide the extraction of finger cores from three-dimensional (3D) scalar fields. After skeletonizing finger cores into skeletons, we design a spanning tree based approach to capture how fingers branch spatially from the finger skeletons. Finally, we devise a novel geometric-glyph augmented tracking graph to study how the fingers and their branches grow, merge, and split over time. Feedback from earth scientists demonstrates the usefulness of our approach to performing spatio-temporal geometric analyses of fingers.Comment: Published at IEEE Transactions on Visualization and Computer Graphic

    Intensity-Based Skeletonization of CryoEM Gray-Scale Images Using a True Segmentation-Free Algorithm

    Get PDF
    Cryo-electron microscopy is an experimental technique that is able to produce 3D gray-scale images of protein molecules. In contrast to other experimental techniques, cryo-electron microscopy is capable of visualizing large molecular complexes such as viruses and ribosomes. At medium resolution, the positions of the atoms are not visible and the process cannot proceed. The medium-resolution images produced by cryo-electron microscopy are used to derive the atomic structure of the proteins in de novo modeling. The skeletons of the 3D gray-scale images are used to interpret important information that is helpful in de novo modeling. Unfortunately, not all features of the image can be captured using a single segmentation. In this paper, we present a segmentation-free approach to extract the gray-scale curve-like skeletons. The approach relies on a novel representation of the 3D image, where the image is modeled as a graph and a set of volume trees. A test containing 36 synthesized maps and one authentic map shows that our approach can improve the performance of the two tested tools used in de novo modeling. The improvements were 62 and 13 percent for Gorgon and DP-TOSS, respectively

    NetMets: software for quantifying and visualizing errors in biological network segmentation

    Get PDF
    One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which can take the form of both hierarchical trees and fully connected networks, depending on the imaging modality and resolution. Network function depends on both the geometric structure and connectivity. Therefore, there is considerable demand for algorithms that segment biological networks embedded in three-dimensional data. While a large number of tracking and segmentation algorithms have been published, most of these do not generalize well across data sets. One of the major reasons for the lack of general-purpose algorithms is the limited availability of metrics that can be used to quantitatively compare their effectiveness against a pre-constructed ground-truth. In this paper, we propose a robust metric for measuring and visualizing the differences between network models. Our algorithm takes into account both geometry and connectivity to measure network similarity. These metrics are then mapped back onto an explicit model for visualization
    • …
    corecore