17 research outputs found

    Human shape modelling for carried object detection and segmentation

    Get PDF
    La détection des objets transportés est un des prérequis pour développer des systèmes qui cherchent à comprendre les activités impliquant des personnes et des objets. Cette thèse présente de nouvelles méthodes pour détecter et segmenter les objets transportés dans des vidéos de surveillance. Les contributions sont divisées en trois principaux chapitres. Dans le premier chapitre, nous introduisons notre détecteur d’objets transportés, qui nous permet de détecter un type générique d’objets. Nous formulons la détection d’objets transportés comme un problème de classification de contours. Nous classifions le contour des objets mobiles en deux classes : objets transportés et personnes. Un masque de probabilités est généré pour le contour d’une personne basé sur un ensemble d’exemplaires (ECE) de personnes qui marchent ou se tiennent debout de différents points de vue. Les contours qui ne correspondent pas au masque de probabilités généré sont considérés comme des candidats pour être des objets transportés. Ensuite, une région est assignée à chaque objet transporté en utilisant la Coupe Biaisée Normalisée (BNC) avec une probabilité obtenue par une fonction pondérée de son chevauchement avec l’hypothèse du masque de contours de la personne et du premier plan segmenté. Finalement, les objets transportés sont détectés en appliquant une Suppression des Non-Maxima (NMS) qui élimine les scores trop bas pour les objets candidats. Le deuxième chapitre de contribution présente une approche pour détecter des objets transportés avec une méthode innovatrice pour extraire des caractéristiques des régions d’avant-plan basée sur leurs contours locaux et l’information des super-pixels. Initiallement, un objet bougeant dans une séquence vidéo est segmente en super-pixels sous plusieurs échelles. Ensuite, les régions ressemblant à des personnes dans l’avant-plan sont identifiées en utilisant un ensemble de caractéristiques extraites de super-pixels dans un codebook de formes locales. Ici, les régions ressemblant à des humains sont équivalentes au masque de probabilités de la première méthode (ECE). Notre deuxième détecteur d’objets transportés bénéficie du nouveau descripteur de caractéristiques pour produire une carte de probabilité plus précise. Les compléments des super-pixels correspondants aux régions ressemblant à des personnes dans l’avant-plan sont considérés comme une carte de probabilité des objets transportés. Finalement, chaque groupe de super-pixels voisins avec une haute probabilité d’objets transportés et qui ont un fort support de bordure sont fusionnés pour former un objet transporté. Finalement, dans le troisième chapitre, nous présentons une méthode pour détecter et segmenter les objets transportés. La méthode proposée adopte le nouveau descripteur basé sur les super-pixels pour iii identifier les régions ressemblant à des objets transportés en utilisant la modélisation de la forme humaine. En utilisant l’information spatio-temporelle des régions candidates, la consistance des objets transportés récurrents, vus dans le temps, est obtenue et sert à détecter les objets transportés. Enfin, les régions d’objets transportés sont raffinées en intégrant de l’information sur leur apparence et leur position à travers le temps avec une extension spatio-temporelle de GrabCut. Cette étape finale sert à segmenter avec précision les objets transportés dans les séquences vidéo. Nos méthodes sont complètement automatiques, et font des suppositions minimales sur les personnes, les objets transportés, et les les séquences vidéo. Nous évaluons les méthodes décrites en utilisant deux ensembles de données, PETS 2006 et i-Lids AVSS. Nous évaluons notre détecteur et nos méthodes de segmentation en les comparant avec l’état de l’art. L’évaluation expérimentale sur les deux ensembles de données démontre que notre détecteur d’objets transportés et nos méthodes de segmentation surpassent de façon significative les algorithmes compétiteurs.Detecting carried objects is one of the requirements for developing systems that reason about activities involving people and objects. This thesis presents novel methods to detect and segment carried objects in surveillance videos. The contributions are divided into three main chapters. In the first, we introduce our carried object detector which allows to detect a generic class of objects. We formulate carried object detection in terms of a contour classification problem. We classify moving object contours into two classes: carried object and person. A probability mask for person’s contours is generated based on an ensemble of contour exemplars (ECE) of walking/standing humans in different viewing directions. Contours that are not falling in the generated hypothesis mask are considered as candidates for carried object contours. Then, a region is assigned to each carried object candidate contour using Biased Normalized Cut (BNC) with a probability obtained by a weighted function of its overlap with the person’s contour hypothesis mask and segmented foreground. Finally, carried objects are detected by applying a Non-Maximum Suppression (NMS) method which eliminates the low score carried object candidates. The second contribution presents an approach to detect carried objects with an innovative method for extracting features from foreground regions based on their local contours and superpixel information. Initially, a moving object in a video frame is segmented into multi-scale superpixels. Then human-like regions in the foreground area are identified by matching a set of extracted features from superpixels against a codebook of local shapes. Here the definition of human like regions is equivalent to a person’s probability map in our first proposed method (ECE). Our second carried object detector benefits from the novel feature descriptor to produce a more accurate probability map. Complement of the matching probabilities of superpixels to human-like regions in the foreground are considered as a carried object probability map. At the end, each group of neighboring superpixels with a high carried object probability which has strong edge support is merged to form a carried object. Finally, in the third contribution we present a method to detect and segment carried objects. The proposed method adopts the new superpixel-based descriptor to identify carried object-like candidate regions using human shape modeling. Using spatio-temporal information of the candidate regions, consistency of recurring carried object candidates viewed over time is obtained and serves to detect carried objects. Last, the detected carried object regions are refined by integrating information of their appearances and their locations over time with a spatio-temporal extension of GrabCut. This final stage is used to accurately segment carried objects in frames. Our methods are fully automatic, and make minimal assumptions about a person, carried objects and videos. We evaluate the aforementioned methods using two available datasets PETS 2006 and i-Lids AVSS. We compare our detector and segmentation methods against a state-of-the-art detector. Experimental evaluation on the two datasets demonstrates that both our carried object detection and segmentation methods significantly outperform competing algorithms

    Graph learning and its applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, Albany, Auckland, New Zealand

    Get PDF
    Since graph features consider the correlations between two data points to provide high-order information, i.e., more complex correlations than the low-order information which considers the correlations in the individual data, they have attracted much attention in real applications. The key of graph feature extraction is the graph construction. Previous study has demonstrated that the quality of the graph usually determines the effectiveness of the graph feature. However, the graph is usually constructed from the original data which often contain noise and redundancy. To address the above issue, graph learning is designed to iteratively adjust the graph and model parameters so that improving the quality of the graph and outputting optimal model parameters. As a result, graph learning has become a very popular research topic in traditional machine learning and deep learning. Although previous graph learning methods have been applied in many fields by adding a graph regularization to the objective function, they still have some issues to be addressed. This thesis focuses on the study of graph learning aiming to overcome the drawbacks in previous methods for different applications. We list the proposed methods as follows. • We propose a traditional graph learning method under supervised learning to consider the robustness and the interpretability of graph learning. Specifically, we propose utilizing self-paced learning to assign important samples with large weights, conducting feature selection to remove redundant features, and learning a graph matrix from the low dimensional data of the original data to preserve the local structure of the data. As a consequence, both important samples and useful features are used to select support vectors in the SVM framework. • We propose a traditional graph learning method under semi-supervised learning to explore parameter-free fusion of graph learning. Specifically, we first employ the discrete wavelet transform and Pearson correlation coefficient to obtain multiple fully connected Functional Connectivity brain Networks (FCNs) for every subject, and then learn a sparsely connected FCN for every subject. Finally, the ℓ1-SVM is employed to learn the important features and conduct disease diagnosis. • We propose a deep graph learning method to consider graph fusion of graph learning. Specifically, we first employ the Simple Linear Iterative Clustering (SLIC) method to obtain multi-scale features for every image, and then design a new graph fusion method to fine-tune features of every scale. As a result, the multi-scale feature fine-tuning, graph learning, and feature learning are embedded into a unified framework. All proposed methods are evaluated on real-world data sets, by comparing to state-of-the-art methods. Experimental results demonstrate that our methods outperformed all comparison methods

    Automated Segmentation for Connectomics Utilizing Higher-Order Biological Priors

    Get PDF
    This thesis presents novel methodological approaches for the automated segmentation of neurons from electron microscopic image volumes using machine learning techniques. New potentials for neural segmentation are revealed by incorporating (high-level) biological prior knowledge. This goes beyond the modeling of neural tissue which has been applied for the purpose of its segmentation, so far. Firstly, the V-Multicut algorithm is introduced which enables the consideration of topological constraints for segmented membranes. In this way, biologically implausible appearances of membranes are corrected. Secondly, this thesis proves that, in addition to local evidence and topological requirements for the detection of neural membranes, the consideration of high-level biological prior knowledge is beneficial. For this task, both the recently proposed Asymmetric Multiway Cut and the introduced Semantic Agglomerative Clustering algorithm are implemented and quantitatively evaluated. To be precise, the spatial separation of dendrites and axons in mammals is exploited to significantly improve the segmentation quality. Additionally, new ways to improve the scalability of the used algorithms are presented. All in all this thesis serves as another step towards fully automated segmentation of neurons and contributes to the field of connectomics

    복부 CT에서 간과 혈관 분할 기법

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 컴퓨터공학부,2020. 2. 신영길.복부 전산화 단층 촬영 (CT) 영상에서 정확한 간 및 혈관 분할은 체적 측정, 치료 계획 수립 및 추가적인 증강 현실 기반 수술 가이드와 같은 컴퓨터 진단 보조 시스템을 구축하는데 필수적인 요소이다. 최근 들어 컨볼루셔널 인공 신경망 (CNN) 형태의 딥 러닝이 많이 적용되면서 의료 영상 분할의 성능이 향상되고 있지만, 실제 임상에 적용할 수 있는 높은 일반화 성능을 제공하기는 여전히 어렵다. 또한 물체의 경계는 전통적으로 영상 분할에서 매우 중요한 요소로 이용되었지만, CT 영상에서 간의 불분명한 경계를 추출하기가 어렵기 때문에 현대 CNN에서는 이를 사용하지 않고 있다. 간 혈관 분할 작업의 경우, 복잡한 혈관 영상으로부터 학습 데이터를 만들기 어렵기 때문에 딥 러닝을 적용하기가 어렵다. 또한 얇은 혈관 부분의 영상 밝기 대비가 약하여 원본 영상에서 식별하기가 매우 어렵다. 본 논문에서는 위 언급한 문제들을 해결하기 위해 일반화 성능이 향상된 CNN과 얇은 혈관을 포함하는 복잡한 간 혈관을 정확하게 분할하는 알고리즘을 제안한다. 간 분할 작업에서 우수한 일반화 성능을 갖는 CNN을 구축하기 위해, 내부적으로 간 모양을 추정하는 부분이 포함된 자동 컨텍스트 알고리즘을 제안한다. 또한, CNN을 사용한 학습에 경계선의 개념이 새롭게 제안된다. 모호한 경계부가 포함되어 있어 전체 경계 영역을 CNN에 훈련하는 것은 매우 어렵기 때문에 반복되는 학습 과정에서 인공 신경망이 스스로 예측한 확률에서 부정확하게 추정된 부분적 경계만을 사용하여 인공 신경망을 학습한다. 실험적 결과를 통해 제안된 CNN이 다른 최신 기법들보다 정확도가 우수하다는 것을 보인다. 또한, 제안된 CNN의 일반화 성능을 검증하기 위해 다양한 실험을 수행한다. 간 혈관 분할에서는 간 내부의 관심 영역을 지정하기 위해 앞서 획득한 간 영역을 활용한다. 정확한 간 혈관 분할을 위해 혈관 후보 점들을 추출하여 사용하는 알고리즘을 제안한다. 확실한 후보 점들을 얻기 위해, 삼차원 영상의 차원을 먼저 최대 강도 투영 기법을 통해 이차원으로 낮춘다. 이차원 영상에서는 복잡한 혈관의 구조가 보다 단순화될 수 있다. 이어서, 이차원 영상에서 혈관 분할을 수행하고 혈관 픽셀들은 원래의 삼차원 공간상으로 역 투영된다. 마지막으로, 전체 혈관의 분할을 위해 원본 영상과 혈관 후보 점들을 모두 사용하는 새로운 레벨 셋 기반 알고리즘을 제안한다. 제안된 알고리즘은 복잡한 구조가 단순화되고 얇은 혈관이 더 잘 보이는 이차원 영상에서 얻은 후보 점들을 사용하기 때문에 얇은 혈관 분할에서 높은 정확도를 보인다. 실험적 결과에 의하면 제안된 알고리즘은 잘못된 영역의 추출 없이 다른 레벨 셋 기반 알고리즘들보다 우수한 성능을 보인다. 제안된 알고리즘은 간과 혈관을 분할하는 새로운 방법을 제시한다. 제안된 자동 컨텍스트 구조는 사람이 디자인한 학습 과정이 일반화 성능을 크게 향상할 수 있다는 것을 보인다. 그리고 제안된 경계선 학습 기법으로 CNN을 사용한 영상 분할의 성능을 향상할 수 있음을 내포한다. 간 혈관의 분할은 이차원 최대 강도 투영 기반 이미지로부터 획득된 혈관 후보 점들을 통해 얇은 혈관들이 성공적으로 분할될 수 있음을 보인다. 본 논문에서 제안된 알고리즘은 간의 해부학적 분석과 자동화된 컴퓨터 진단 보조 시스템을 구축하는 데 매우 중요한 기술이다.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 초록 197Docto

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    From light rays to 3D models

    Get PDF

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations

    Investigation into Intelligent Image Preprocessor Techniques for Artificial Neural Networks

    Get PDF
    In this thesis we will discuss the process for data preparation of visual or image data ready for use in Artificial Neural Network systems. The thesis will present these concepts, their location in the broader field and the arguments as why certain practices are considered required for these systems; before presenting a number of novel algorithms that are intended as alternatives with desirable properties. These novel algorithms will then be testing in a practical domain (simulating the challenge of face-detection within a scene), followed up by discussions of their successes and failures. The findings presented show that some of the novel algorithms can show statistically significant improvement in accuracy compared to some of the traditional methods used in the field. This thesis concludes with recommendations in which situations the novel algorithms may (if at all) be suitable for use in future designs and potential avenues for further research
    corecore