1,255 research outputs found

    Automatically Controlled Morphing of 2D Shapes with Textures

    Get PDF
    This paper deals with 2D image transformations from a perspective of a 3D heterogeneous shape modeling and computer animation. Shape and image morphing techniques have attracted a lot of attention in artistic design, computer animation, and interactive and streaming applications. We present a novel method for morphing between two topologically arbitrary 2D shapes with sophisticated textures (raster color attributes) using a metamorphosis technique called space-time blending (STB) coupled with space-time transfinite interpolation. The method allows for a smooth transition between source and target objects by generating in-between shapes and associated textures without setting any correspondences between boundary points or features. The method requires no preprocessing and can be applied in 2D animation when position and topology of source and target objects are significantly different. With the conversion of given 2D shapes to signed distance fields, we have detected a number of problems with directly applying STB to them. We propose a set of novel and mathematically substantiated techniques, providing automatic control of the morphing process with STB and an algorithm of applying those techniques in combination. We illustrate our method with applications in 2D animation and interactive applications

    Hybrid modelling of time-variant heterogeneous objects.

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve

    Beam-colored Sketch and Image-based 3D Continuous Wireframe Reconstruction with different Materials and Cross-Sections

    Get PDF
    The automated reverse engineering of wireframes is a common task in topology optimization, fast concept design, bionic and point cloud reconstruction. This article deals with the usage of skeleton-based reconstruction of sketches in 2D images. The result leads to a flexible at least C₁ continuous shape description

    An interactive framework for component-based morphing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Three-dimensional metamorphosis: a survey

    Get PDF
    International audienceA metamorphosis or a (3D) morphing is the process of continuously transforming one object into another. 2D and 3D morphing are popular in computer animation, industrial design, and growth simulation. Since there is no intrinsic solution to the morphing problem, user interaction can be a key component of a morphing software. Many morphing techniques have been proposed in recent years for 2D and 3D objects. We present a survey of the various 3D approaches, giving special attention to the user interface. We show how the approaches are intimately related to the object representations. We conclude by sketching some morphing strategies for the future

    2D Shape Transformation Using 3D Blending

    Get PDF
    Abstract Computer animation is one of the key components of a multimedia document or presentation. Shape transformation between objects of different topology and positions is an open modeling problem in computer animation. We propose a new approach to solving this problem for two given 2D shapes. The key steps of the proposed algorithm are: dimension increase by converting input 2D shapes into halfcylinders in 3D space, bounded blending with added material between the half-cylinders, and making cross-sections for getting frames of the animation. We use the bounded blending set operations defined using R-functions and displacement functions with the localized area of influence applied to the functionally defined 3D half-cylinders. The proposed approach is general enough to handle input shapes with arbitrary topology defined as polygons with holes and disjoint components, set-theoretic objects, or analytical implicit curves. The obtained unusual amoeba-like behavior of the 2D shape combines metamorphosis with the non-linear movement on the plane

    Hybrid modelling of time-variant heterogeneous objects

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Patient-specific anatomical illustration via model-guided texture synthesis

    Get PDF
    Medical illustrations can make powerful use of textures to attractively, effectively, and efficiently visualize the appearance of the surface or cut surface of anatomic structures. It can do this by implying the anatomic structure's physical composition and clarifying its identity and 3-D shape. Current visualization methods are only capable of conveying detailed information about the orientation, internal structure, and other local properties of the anatomical objects for a typical individual, not for a particular patient. Although one can derive the shape of the individual patient's object from CT or MRI, it is important to apply these illustrative techniques to those particular shapes. In this research patient-specific anatomical illustrations are created by model-guided texture synthesis (MGTS). Given 2D exemplar textures and model-based guidance information as input, MGTS uses exemplar-based texture synthesis techniques to create patient-specific surface and solid textures. It consists of three main components. The first component includes a novel texture metamorphosis approach for creating interpolated exemplar textures given two exemplar textures. This component uses an energy optimization scheme derived from optimal control principles that utilizes intensity and structure information in obtaining the transformation. The second component consists of creating the model-based guidance information, such as directions and layers, for that specific model. This component uses coordinates implied by discrete medial 3D anatomical models (m-reps). The last component accomplishes exemplar-based texture synthesis by textures whose characteristics are spatially variant on and inside the 3D models. It considers the exemplar textures from the first component and guidance information from the second component in synthesizing high-quality, high-resolution solid and surface textures. Patient-specific illustrations with a variety of textures for different anatomical models, such as muscles and bones, are shown to be useful for our clinician to comprehend the shape of the models under radiation dose and to distinguish the models from one another
    corecore