4,159 research outputs found

    3D Geometric Analysis of Tubular Objects based on Surface Normal Accumulation

    Get PDF
    This paper proposes a simple and efficient method for the reconstruction and extraction of geometric parameters from 3D tubular objects. Our method constructs an image that accumulates surface normal information, then peaks within this image are located by tracking. Finally, the positions of these are optimized to lie precisely on the tubular shape centerline. This method is very versatile, and is able to process various input data types like full or partial mesh acquired from 3D laser scans, 3D height map or discrete volumetric images. The proposed algorithm is simple to implement, contains few parameters and can be computed in linear time with respect to the number of surface faces. Since the extracted tube centerline is accurate, we are able to decompose the tube into rectilinear parts and torus-like parts. This is done with a new linear time 3D torus detection algorithm, which follows the same principle of a previous work on 2D arc circle recognition. Detailed experiments show the versatility, accuracy and robustness of our new method.Comment: in 18th International Conference on Image Analysis and Processing, Sep 2015, Genova, Italy. 201

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Gap Filling of 3-D Microvascular Networks by Tensor Voting

    Get PDF
    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated

    Extraction of Blood Vessels Geometric Shape Features with Catheter Localization and Geodesic Distance Transform for Right Coronary Artery Detection.

    Get PDF
    X-ray angiography is considered the standard imaging sensory system for diagnosing coronary artery diseases. For automated, accurate diagnosis of such diseases, coronary vessels’ detection from the captured low quality and noisy angiography images is challenging. It is essential to detect the main branch of the coronary artery, to resolve such limitations along with the problems due to the sudden changes in the lumen diameter, and the abrupt changes in local artery direction. Accordingly, this paper solved these limitations by proposing a computer-aided detection system for the right coronary artery (RCA) extraction, where geometric shape features with catheter localization and geodesic distance transform in the angiography images through two parts. In part 1, the captured image was initially preprocessed for contrast enhancement using singular value decomposition-based contrast adjustment, followed by generating the vesselness map using Jerman filter, and for further segmentation the K-means was introduced. Afterward, in part 2, the geometric shape features of the RCA, as well as the skeleton gradient transform, and the start/end points were determined to extract the main blood vessel of the RCA. The analysis of the skeletonize image was performed using Geodesic distance transform to examine all branches starting from the predetermined start point and cover the branching till the predefined end points. A ranking matrix, and the inverse of skeletonization were finally carried out to get the actual main branch. The performance of the proposed system was then evaluated using different evaluation metrics on the angiography images...

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery

    Get PDF
    Cataloged from PDF version of article.Automatic mapping and monitoring of agricultural landscapes using remotely sensed imagery has been an important research problem. This paper describes our work on developing automatic methods for the detection of target landscape features in very high spatial resolution images. The target objects of interest consist of linear strips of woody vegetation that include hedgerows and riparian vegetation that are important elements of the landscape ecology and biodiversity. The proposed framework exploits the spectral, textural, and shape properties of objects using hierarchical feature extraction and decision-making steps. First, a multifeature and multiscale strategy is used to be able to cover different characteristics of these objects in a wide range of landscapes. Discriminant functions trained on combinations of spectral and textural features are used to select the pixels that may belong to candidate objects. Then, a shape analysis step employs morphological top-hat transforms to locate the woody vegetation areas that fall within the width limits of an acceptable object, and a skeletonization and iterative least-squares fitting procedure quantifies the linearity of the objects using the uniformity of the estimated radii along the skeleton points. Extensive experiments using QuickBird imagery from three European Union member states show that the proposed algorithms provide good localization of the target objects in a wide range of landscapes with very different characteristics
    corecore