1,420 research outputs found

    Skeletal Shape Correspondence Through Entropy

    Get PDF
    We present a novel approach for improving the shape statistics of medical image objects by generating correspondence of skeletal points. Each object's interior is modeled by an s-rep, i.e., by a sampled, folded, two-sided skeletal sheet with spoke vectors proceeding from the skeletal sheet to the boundary. The skeleton is divided into three parts: the up side, the down side, and the fold curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along that skeleton in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface/boundary-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and the sampling regularity, here of the spokes' geometric properties. Evaluation on synthetic and real world lateral ventricle and hippocampus data sets demonstrate improvement in the performance of statistics using the resulting probability distributions. This improvement is greater than that achieved by an entropy-based correspondence method on the boundary points

    Fitting Skeletal Object Models Using Spherical Harmonics Based Template Warping

    Get PDF
    We present a scheme that propagates a reference skeletal model (s-rep) into a particular case of an object, thereby propagating the initial shape-related layout of the skeleton-to-boundary vectors, called spokes. The scheme represents the surfaces of the template as well as the target objects by spherical harmonics and computes a warp between these via a thin plate spline. To form the propagated s-rep, it applies the warp to the spokes of the template s-rep and then statistically refines. This automatic approach promises to make s-rep fitting robust for complicated objects, which allows s-rep based statistics to be available to all. The improvement in fitting and statistics is significant compared with the previous methods and in statistics compared with a state-of-the-art boundary based method

    Non-Euclidean classification of medically imaged objects via s-reps

    Get PDF
    AbstractClassifying medically imaged objects, e.g., into diseased and normal classes, has been one of the important goals in medical imaging. We propose a novel classification scheme that uses a skeletal representation to provide rich non-Euclidean geometric object properties. Our statistical method combines distance weighted discrimination (DWD) with a carefully chosen Euclideanization which takes full advantage of the geometry of the manifold on which these non-Euclidean geometric object properties (GOPs) live. Our method is evaluated via the task of classifying 3D hippocampi between schizophrenics and healthy controls. We address three central questions. 1) Does adding shape features increase discriminative power over the more standard classification based only on global volume? 2) If so, does our skeletal representation provide greater discriminative power than a conventional boundary point distribution model (PDM)? 3) Especially, is Euclideanization of non-Euclidean shape properties important in achieving high discriminative power? Measuring the capability of a method in terms of area under the receiver operator characteristic (ROC) curve, we show that our proposed method achieves strongly better classification than both the classification method based on global volume alone and the s-rep-based classification method without proper Euclideanization of non-Euclidean GOPs. We show classification using Euclideanized s-reps is also superior to classification using PDMs, whether the PDMs are first Euclideanized or not. We also show improved performance with Euclideanized boundary PDMs over non-linear boundary PDMs. This demonstrates the benefit that proper Euclideanization of non-Euclidean GOPs brings not only to s-rep-based classification but also to PDM-based classification

    Doctor of Philosophy in Computing

    Get PDF
    dissertationStatistical shape analysis has emerged as an important tool for the quantitative analysis of anatomy in many medical imaging applications. The correspondence based approach to evaluate shape variability is a popular method, based on comparing configurations of carefully placed landmarks on each shape. In recent years, methods for automatic placement of landmarks have enhanced the ability of this approach to capture statistical properties of shape populations. However, biomedical shapes continue to present considerable difficulties in automatic correspondence optimization due to inherent geometric complexity and the need to correlate shape change with underlying biological parameters. This dissertation addresses these technical difficulties and presents improved shape correspondence models. In particular, this dissertation builds on the particle-based modeling (PBM) framework described by Joshua Cates' 2010 Ph.D. dissertation. In the PBM framework, correspondences are modeled as a set of dynamic points or a particle system, positioned automatically on shape surfaces by optimizing entropy contained in the model, with the idea of balancing model simplicity against accuracy of the particle system representation of shapes. This dissertation is a collection of four papers that extend the PBM framework to include shape regression and longitudinal analysis and also adds new methods to improve modeling of complex shapes. It also includes a summary of two applications from the field of orthopaedics. Technical details of the PBM framework are provided in Chapter 2, after which the first topic related to the study of shape change over time is addressed (Chapters 3 and 4). In analyses of normative growth or disease progression, shape regression models allow characterization of the underlying biological process while also facilitating comparison of a sample against a normative model. The first paper introduces a shape regression model into the PBM framework to characterize shape variability due to an underlying biological parameter. It further confirms the statistical significance of this relationship via systematic permutation testing. Simple regression models are, however, not sufficient to leverage information provided by longitudinal studies. Longitudinal studies collect data at multiple time points for each participant and have the potential to provide a rich picture of the anatomical changes occurring during development, disease progression, or recovery. The second paper presents a linear-mixed-effects (LME) shape model in order to fully leverage the high-dimensional, complex features provided by longitudinal data. The parameters of the LME shape model are estimated in a hierarchical manner within the PBM framework. The topic of geometric complexity present in certain biological shapes is addressed next (Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, inhibiting correspondence based methods from producing a faithful representation of the average shape. In the PBM framework, use of Euclidean distances leads to incorrect particle system interactions while a position-only representation leads to incorrect correspondences around sharp features across shapes. The third paper extends the PBM framework to use efficiently computed geodesic distances and also adds an entropy term based on the surface normal. The fourth paper further replaces the position-only representation with a more robust distance-from-landmark feature in the PBM framework to obtain isometry invariant correspondences. Finally, the above methods are applied to two applications from the field of orthopaedics. The first application uses correspondences across an ensemble of human femurs to characterize morphological shape differences due to femoroacetabular impingement. The second application involves an investigation of the short bone phenotype apparent in mouse models of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations in length to quantify the effect of cancer toward the apparent shortening of long bones (femur, tibia-fibula) in mouse models

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    Population-based fitting of medial shape models with correspondence optimization

    Get PDF
    pre-printA crucial problem in statistical shape analysis is establishing the correspondence of shape features across a population. While many solutions are easy to express using boundary representations, this has been a considerable challenge for medial representations. This paper uses a new 3-D medial model that allows continuous interpolation of the medial manifold and provides a map back and forth between it and the boundary. A measure defined on the medial surface then allows one to write integrals over the boundary and the object interior in medial coordinates, enabling the expression of important object properties in an object-relative coordinate system.We use these integrals to optimize correspondence during model construction, reducing variability due to the model parameterization that could potentially mask true shape change effects. Discrimination and hypothesis testing of populations of shapes are expected to benefit, potentially resulting in improved significance of shape differences between populations even with a smaller sample size
    • …
    corecore