110,354 research outputs found

    Random Sequential Renormalization of Networks I: Application to Critical Trees

    Get PDF
    We introduce the concept of Random Sequential Renormalization (RSR) for arbitrary networks. RSR is a graph renormalization procedure that locally aggregates nodes to produce a coarse grained network. It is analogous to the (quasi-)parallel renormalization schemes introduced by C. Song {\it et al.} (Nature {\bf 433}, 392 (2005)) and studied more recently by F. Radicchi {\it et al.} (Phys. Rev. Lett. {\bf 101}, 148701 (2008)), but much simpler and easier to implement. In this first paper we apply RSR to critical trees and derive analytical results consistent with numerical simulations. Critical trees exhibit three regimes in their evolution under RSR: (i) An initial regime N0ν≲N<N0N_0^{\nu}\lesssim N<N_0, where NN is the number of nodes at some step in the renormalization and N0N_0 is the initial size. RSR in this regime is described by a mean field theory and fluctuations from one realization to another are small. The exponent ν=1/2\nu=1/2 is derived using random walk arguments. The degree distribution becomes broader under successive renormalization -- reaching a power law, pk∼1/kγp_k\sim 1/k^{\gamma} with γ=2\gamma=2 and a variance that diverges as N01/2N_0^{1/2} at the end of this regime. Both of these results are derived based on a scaling theory. (ii) An intermediate regime for N01/4≲N≲N01/2N_0^{1/4}\lesssim N \lesssim N_0^{1/2}, in which hubs develop, and fluctuations between different realizations of the RSR are large. Crossover functions exhibiting finite size scaling, in the critical region N∼N01/2→∞N\sim N_0^{1/2} \to \infty, connect the behaviors in the first two regimes. (iii) The last regime, for 1≪N≲N01/41 \ll N\lesssim N_0^{1/4}, is characterized by the appearance of star configurations with a central hub surrounded by many leaves. The distribution of sizes where stars first form is found numerically to be a power law up to a cutoff that scales as N0νstarN_0^{\nu_{star}} with νstar≈1/4\nu_{star}\approx 1/4

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' Ï•3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Supersaturation Problem for Color-Critical Graphs

    Get PDF
    The \emph{Tur\'an function} \ex(n,F) of a graph FF is the maximum number of edges in an FF-free graph with nn vertices. The classical results of Tur\'an and Rademacher from 1941 led to the study of supersaturated graphs where the key question is to determine hF(n,q)h_F(n,q), the minimum number of copies of FF that a graph with nn vertices and \ex(n,F)+q edges can have. We determine hF(n,q)h_F(n,q) asymptotically when FF is \emph{color-critical} (that is, FF contains an edge whose deletion reduces its chromatic number) and q=o(n2)q=o(n^2). Determining the exact value of hF(n,q)h_F(n,q) seems rather difficult. For example, let c1c_1 be the limit superior of q/nq/n for which the extremal structures are obtained by adding some qq edges to a maximum FF-free graph. The problem of determining c1c_1 for cliques was a well-known question of Erd\H os that was solved only decades later by Lov\'asz and Simonovits. Here we prove that c1>0c_1>0 for every {color-critical}~FF. Our approach also allows us to determine c1c_1 for a number of graphs, including odd cycles, cliques with one edge removed, and complete bipartite graphs plus an edge.Comment: 27 pages, 2 figure

    Building Damage-Resilient Dominating Sets in Complex Networks against Random and Targeted Attacks

    Full text link
    We study the vulnerability of dominating sets against random and targeted node removals in complex networks. While small, cost-efficient dominating sets play a significant role in controllability and observability of these networks, a fixed and intact network structure is always implicitly assumed. We find that cost-efficiency of dominating sets optimized for small size alone comes at a price of being vulnerable to damage; domination in the remaining network can be severely disrupted, even if a small fraction of dominator nodes are lost. We develop two new methods for finding flexible dominating sets, allowing either adjustable overall resilience, or dominating set size, while maximizing the dominated fraction of the remaining network after the attack. We analyze the efficiency of each method on synthetic scale-free networks, as well as real complex networks

    Dynamics of Unperturbed and Noisy Generalized Boolean Networks

    Full text link
    For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.Comment: 29 pages, publishe
    • …
    corecore