4,289 research outputs found

    Size-Time Complexity of Boolean Networks for Prefix Computations

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / DCI-8602256 and ECS-84-1090

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,
,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    Under-approximating Cut Sets for Reachability in Large Scale Automata Networks

    Get PDF
    In the scope of discrete finite-state models of interacting components, we present a novel algorithm for identifying sets of local states of components whose activity is necessary for the reachability of a given local state. If all the local states from such a set are disabled in the model, the concerned reachability is impossible. Those sets are referred to as cut sets and are computed from a particular abstract causality structure, so-called Graph of Local Causality, inspired from previous work and generalised here to finite automata networks. The extracted sets of local states form an under-approximation of the complete minimal cut sets of the dynamics: there may exist smaller or additional cut sets for the given reachability. Applied to qualitative models of biological systems, such cut sets provide potential therapeutic targets that are proven to prevent molecules of interest to become active, up to the correctness of the model. Our new method makes tractable the formal analysis of very large scale networks, as illustrated by the computation of cut sets within a Boolean model of biological pathways interactions gathering more than 9000 components

    Efficient Solution of Language Equations Using Partitioned Representations

    Full text link
    A class of discrete event synthesis problems can be reduced to solving language equations f . X ⊆ S, where F is the fixed component and S the specification. Sequential synthesis deals with FSMs when the automata for F and S are prefix closed, and are naturally represented by multi-level networks with latches. For this special case, we present an efficient computation, using partitioned representations, of the most general prefix-closed solution of the above class of language equations. The transition and the output relations of the FSMs for F and S in their partitioned form are represented by the sets of output and next state functions of the corresponding networks. Experimentally, we show that using partitioned representations is much faster than using monolithic representations, as well as applicable to larger problem instances.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    Communication Efficiency in Self-stabilizing Silent Protocols

    Get PDF
    Self-stabilization is a general paradigm to provide forward recovery capabilities to distributed systems and networks. Intuitively, a protocol is self-stabilizing if it is able to recover without external intervention from any catastrophic transient failure. In this paper, our focus is to lower the communication complexity of self-stabilizing protocols \emph{below} the need of checking every neighbor forever. In more details, the contribution of the paper is threefold: (i) We provide new complexity measures for communication efficiency of self-stabilizing protocols, especially in the stabilized phase or when there are no faults, (ii) On the negative side, we show that for non-trivial problems such as coloring, maximal matching, and maximal independent set, it is impossible to get (deterministic or probabilistic) self-stabilizing solutions where every participant communicates with less than every neighbor in the stabilized phase, and (iii) On the positive side, we present protocols for coloring, maximal matching, and maximal independent set such that a fraction of the participants communicates with exactly one neighbor in the stabilized phase
    • 

    corecore