468 research outputs found

    The seventh visual object tracking VOT2019 challenge results

    Get PDF
    180The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOTST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on 'real-time' shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website.openopenKristan M.; Matas J.; Leonardis A.; Felsberg M.; Pflugfelder R.; Kamarainen J.-K.; Zajc L.C.; Drbohlav O.; Lukezic A.; Berg A.; Eldesokey A.; Kapyla J.; Fernandez G.; Gonzalez-Garcia A.; Memarmoghadam A.; Lu A.; He A.; Varfolomieiev A.; Chan A.; Tripathi A.S.; Smeulders A.; Pedasingu B.S.; Chen B.X.; Zhang B.; Baoyuanwu B.; Li B.; He B.; Yan B.; Bai B.; Li B.; Li B.; Kim B.H.; Ma C.; Fang C.; Qian C.; Chen C.; Li C.; Zhang C.; Tsai C.-Y.; Luo C.; Micheloni C.; Zhang C.; Tao D.; Gupta D.; Song D.; Wang D.; Gavves E.; Yi E.; Khan F.S.; Zhang F.; Wang F.; Zhao F.; De Ath G.; Bhat G.; Chen G.; Wang G.; Li G.; Cevikalp H.; Du H.; Zhao H.; Saribas H.; Jung H.M.; Bai H.; Yu H.; Peng H.; Lu H.; Li H.; Li J.; Li J.; Fu J.; Chen J.; Gao J.; Zhao J.; Tang J.; Li J.; Wu J.; Liu J.; Wang J.; Qi J.; Zhang J.; Tsotsos J.K.; Lee J.H.; Van De Weijer J.; Kittler J.; Ha Lee J.; Zhuang J.; Zhang K.; Wang K.; Dai K.; Chen L.; Liu L.; Guo L.; Zhang L.; Wang L.; Wang L.; Zhang L.; Wang L.; Zhou L.; Zheng L.; Rout L.; Van Gool L.; Bertinetto L.; Danelljan M.; Dunnhofer M.; Ni M.; Kim M.Y.; Tang M.; Yang M.-H.; Paluru N.; Martinel N.; Xu P.; Zhang P.; Zheng P.; Zhang P.; Torr P.H.S.; Wang Q.Z.Q.; Guo Q.; Timofte R.; Gorthi R.K.; Everson R.; Han R.; Zhang R.; You S.; Zhao S.-C.; Zhao S.; Li S.; Li S.; Ge S.; Bai S.; Guan S.; Xing T.; Xu T.; Yang T.; Zhang T.; Vojir T.; Feng W.; Hu W.; Wang W.; Tang W.; Zeng W.; Liu W.; Chen X.; Qiu X.; Bai X.; Wu X.-J.; Yang X.; Chen X.; Li X.; Sun X.; Chen X.; Tian X.; Tang X.; Zhu X.-F.; Huang Y.; Chen Y.; Lian Y.; Gu Y.; Liu Y.; Chen Y.; Zhang Y.; Xu Y.; Wang Y.; Li Y.; Zhou Y.; Dong Y.; Xu Y.; Zhang Y.; Li Y.; Luo Z.W.Z.; Zhang Z.; Feng Z.-H.; He Z.; Song Z.; Chen Z.; Zhang Z.; Wu Z.; Xiong Z.; Huang Z.; Teng Z.; Ni Z.Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Pflugfelder, R.; Kamarainen, J. -K.; Zajc, L. C.; Drbohlav, O.; Lukezic, A.; Berg, A.; Eldesokey, A.; Kapyla, J.; Fernandez, G.; Gonzalez-Garcia, A.; Memarmoghadam, A.; Lu, A.; He, A.; Varfolomieiev, A.; Chan, A.; Tripathi, A. S.; Smeulders, A.; Pedasingu, B. S.; Chen, B. X.; Zhang, B.; Baoyuanwu, B.; Li, B.; He, B.; Yan, B.; Bai, B.; Li, B.; Li, B.; Kim, B. H.; Ma, C.; Fang, C.; Qian, C.; Chen, C.; Li, C.; Zhang, C.; Tsai, C. -Y.; Luo, C.; Micheloni, C.; Zhang, C.; Tao, D.; Gupta, D.; Song, D.; Wang, D.; Gavves, E.; Yi, E.; Khan, F. S.; Zhang, F.; Wang, F.; Zhao, F.; De Ath, G.; Bhat, G.; Chen, G.; Wang, G.; Li, G.; Cevikalp, H.; Du, H.; Zhao, H.; Saribas, H.; Jung, H. M.; Bai, H.; Yu, H.; Peng, H.; Lu, H.; Li, H.; Li, J.; Li, J.; Fu, J.; Chen, J.; Gao, J.; Zhao, J.; Tang, J.; Li, J.; Wu, J.; Liu, J.; Wang, J.; Qi, J.; Zhang, J.; Tsotsos, J. K.; Lee, J. H.; Van De Weijer, J.; Kittler, J.; Ha Lee, J.; Zhuang, J.; Zhang, K.; Wang, K.; Dai, K.; Chen, L.; Liu, L.; Guo, L.; Zhang, L.; Wang, L.; Wang, L.; Zhang, L.; Wang, L.; Zhou, L.; Zheng, L.; Rout, L.; Van Gool, L.; Bertinetto, L.; Danelljan, M.; Dunnhofer, M.; Ni, M.; Kim, M. Y.; Tang, M.; Yang, M. -H.; Paluru, N.; Martinel, N.; Xu, P.; Zhang, P.; Zheng, P.; Zhang, P.; Torr, P. H. S.; Wang, Q. Z. Q.; Guo, Q.; Timofte, R.; Gorthi, R. K.; Everson, R.; Han, R.; Zhang, R.; You, S.; Zhao, S. -C.; Zhao, S.; Li, S.; Li, S.; Ge, S.; Bai, S.; Guan, S.; Xing, T.; Xu, T.; Yang, T.; Zhang, T.; Vojir, T.; Feng, W.; Hu, W.; Wang, W.; Tang, W.; Zeng, W.; Liu, W.; Chen, X.; Qiu, X.; Bai, X.; Wu, X. -J.; Yang, X.; Chen, X.; Li, X.; Sun, X.; Chen, X.; Tian, X.; Tang, X.; Zhu, X. -F.; Huang, Y.; Chen, Y.; Lian, Y.; Gu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Xu, Y.; Wang, Y.; Li, Y.; Zhou, Y.; Dong, Y.; Xu, Y.; Zhang, Y.; Li, Y.; Luo, Z. W. Z.; Zhang, Z.; Feng, Z. -H.; He, Z.; Song, Z.; Chen, Z.; Zhang, Z.; Wu, Z.; Xiong, Z.; Huang, Z.; Teng, Z.; Ni, Z

    Smart HMI for an autonomous vehicle

    Get PDF
    El presente trabajo expone la arquitectura diseñada para la implementación de un HMI (Human Machine Interface) en un vehículo autónomo desarrollado en la Universidad de Alcalá. Este sistema hace uso del ecosistema ROS (Robot Operating System) para la comunicación entre los diferentes modulos desarrollados en el vehículo. Además se expone la creación de una herramienta de captación de datos de conductores haciendo uso de la mirada de este, basada en OpenFace, una herramienta de código libre para análisis de caras. Para ello se han desarrollado dos métodos, uno basado en un método lineal y otro usando técnicas del algoritmo NARMAX. Se han desarrollado diferentes test para demostrar la precisión de ambos métodos y han sido evaluados en el dataset de accidentes DADA2000.This works presents the framework that composed the HMI (Human Machine Interface) built in an autonomous vehicle from University of Alcalá. This system has been developed using the framework ROS (Robot Operating System) for the communication between the different sub-modules developed on the vehicle. Also, a system to obtain gaze focalization data from drivers using a camera is presented, based on OpenFace, which is an open source tool for face analysis. Two different methods are proposed, one linear and other based on NARMAX algorithm. Different test has been done in order to prove their accuracy and they have been evaluated on the challenging dataset DADA2000, which is composed by traffic accidents.Máster Universitario en Ingeniería Industrial (M141

    Driver Attention based on Deep Learning for a Smart Vehicle to Driver (V2D) Interaction

    Get PDF
    La atención del conductor es un tópico interesante dentro del mundo de los vehículos inteligentes para la consecución de tareas que van desde la monitorización del conductor hasta la conducción autónoma. Esta tesis aborda este tópico basándose en algoritmos de aprendizaje profundo para conseguir una interacción inteligente entre el vehículo y el conductor. La monitorización del conductor requiere una estimación precisa de su mirada en un entorno 3D para conocer el estado de su atención. En esta tesis se aborda este problema usando una única cámara, para que pueda ser utilizada en aplicaciones reales, sin un alto coste y sin molestar al conductor. La herramienta desarrollada ha sido evaluada en una base de datos pública (DADA2000), obteniendo unos resultados similares a los obtenidos mediante un seguidor de ojos caro que no puede ser usado en un vehículo real. Además, ha sido usada en una aplicación que evalúa la atención del conductor en la transición de modo autónomo a manual de forma simulada, proponiendo el uso de una métrica novedosa para conocer el estado de la situación del conductor en base a su atención sobre los diferentes objetos de la escena. Por otro lado, se ha propuesto un algoritmo de estimación de atención del conductor, utilizando las últimas técnicas de aprendizaje profundo como son las conditional Generative Adversarial Networks (cGANs) y el Multi-Head Self-Attention. Esto permite enfatizar ciertas zonas de la escena al igual que lo haría un humano. El modelo ha sido entrenado y validado en dos bases de datos públicas (BDD-A y DADA2000) superando a otras propuestas del estado del arte y consiguiendo unos tiempos de inferencia que permiten su uso en aplicaciones reales. Por último, se ha desarrollado un modelo que aprovecha nuestro algoritmo de atención del conductor para comprender una escena de tráfico obteniendo la decisión tomada por el vehículo y su explicación, en base a las imágenes tomadas por una cámara situada en la parte frontal del vehículo. Ha sido entrenado en una base de datos pública (BDD-OIA) proponiendo un modelo que entiende la secuencia temporal de los eventos usando un Transformer Encoder, consiguiendo superar a otras propuestas del estado del arte. Además de su validación en la base de datos, ha sido implementado en una aplicación que interacciona con el conductor aconsejando sobre las decisiones a tomar y sus explicaciones ante diferentes casos de uso en un entorno simulado. Esta tesis explora y demuestra los beneficios de la atención del conductor para el mundo de los vehículos inteligentes, logrando una interacción vehículo conductor a través de las últimas técnicas de aprendizaje profundo

    Multihop Rendezvous Algorithm for Frequency Hopping Cognitive Radio Networks

    Get PDF
    Cognitive radios allow the possibility of increasing utilization of the wireless spectrum, but because of their dynamic access nature require new techniques for establishing and joining networks, these are known as rendezvous. Existing rendezvous algorithms assume that rendezvous can be completed in a single round or hop of time. However, cognitive radio networks utilizing frequency hopping that is too fast for synchronization packets to be exchanged in a single hop require a rendezvous algorithm that supports multiple hop rendezvous. We propose the Multiple Hop (MH) rendezvous algorithm based on a pre-shared sequence of random numbers, bounded timing differences, and similar channel lists to successfully match a percentage of hops. It is tested in simulation against other well known rendezvous algorithms and implemented in GNU Radio for the HackRF One. We found from the results of our simulation testing that at 100 hops per second the MH algorithm is faster than other tested algorithms at 50 or more channels with timing ±50 milliseconds, at 250 or more channels with timing ±500 milliseconds, and at 2000 channels with timing ±5000 milliseconds. In an asymmetric environment with 100 hops per second, a 500 millisecond timing difference, and 1000 channels the MH algorithm was faster than other tested algorithms as long as the channel overlap was 35% or higher for a 50% required packet success to complete rendezvous. We recommend the Multihop algorithm for use cases with a fast frequency hop rate and a slow data transmission rate requiring multiple hops to rendezvous or use cases where the channel count equals or exceeds 250 channels, as long as timing data is available and all of the radios to be connected to the network can be pre-loaded with a shared seed

    Enriching remote labs with computer vision and drones

    Get PDF
    165 p.With the technological advance, new learning technologies are being developed in order to contribute to better learning experience. In particular, remote labs constitute an interesting and a practical way that can motivate nowadays students to learn. The studen can at anytime, and from anywhere, access the remote lab and do his lab-work. Despite many advantages, remote tecnologies in education create a distance between the student and the teacher. Without the presence of a teacher, students can have difficulties, if no appropriate interventions can be taken to help them. In this thesis, we aim to enrich an existing remote electronic lab made for engineering students called "LaboREM" (for remote Laboratory) in two ways: first we enable the student to send high level commands to a mini-drone available in the remote lab facility. The objective is to examine the front panels of electronic measurement instruments, by the camera embedded on the drone. Furthermore, we allow remote student-teacher communication using the drone, in case there is a teacher present in the remote lab facility. Finally, the drone has to go back home when the mission is over to land on a platform for automatic recharge of the batteries. Second, we propose an automatic system that estimates the affective state of the student (frustrated/confused/flow) in order to take appropriate interventions to ensure good learning outcomes. For example, if the studen is having major difficulties we can try to give him hints or to reduce the difficulty level of the lab experiment. We propose to do this by using visual cues (head pose estimation and facil expression analysis). Many evidences on the state of the student can be acquired, however these evidences are incomplete, sometims inaccurate, and do not cover all the aspects of the state of the student alone. This is why we propose to fuse evidences using the theory of Dempster-Shafer that allows the fusion of incomplete evidence
    corecore