104 research outputs found

    Expander Graphs and Coding Theory

    Get PDF
    Expander graphs are highly connected sparse graphs which lie at the interface of many different fields of study. For example, they play important roles in prime sieves, cryptography, compressive sensing, metric embedding, and coding theory to name a few. This thesis focuses on the connections between sparse graphs and coding theory. It is a major challenge to explicitly construct sparse graphs with good expansion properties, for example Ramanujan graphs. Nevertheless, explicit constructions do exist, and in this thesis, we survey many of these constructions up to this point including a new construction which slightly improves on an earlier edge expansion bound. The edge expansion of a graph is crucial in applications, and it is well-known that computing the edge expansion of an arbitrary graph is NP-hard. We present a simple algo-rithm for approximating the edge expansion of a graph using linear programming techniques. While Andersen and Lang (2008) proved similar results, our analysis attacks the problem from a different vantage point and was discovered independently. The main contribution in the thesis is a new result in fast decoding for expander codes. Current algorithms in the literature can decode a constant fraction of errors in linear time but require that the underlying graphs have vertex expansion at least 1/2. We present a fast decoding algorithm that can decode a constant fraction of errors in linear time given any vertex expansion (even if it is much smaller than 1/2) by using a stronger local code, and the fraction of errors corrected almost doubles that of Viderman (2013)

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development

    Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    Get PDF
    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed

    Space-based solar power conversion and delivery systems study

    Get PDF
    Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints

    Shared memory with hidden latency on a family of mesh-like networks

    Get PDF

    Characterization of Thin Films for Polymer Solar Cells:Stability and Response to Concentrated Light

    Get PDF

    Proceedings of the First Semiannual Distributed Receiver Program Review

    Get PDF
    Point focus and line focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. Concentrator, receiver, and power conversion development are covered along with hardware tests and evaluation. Mass production costing, parabolic dish applications, and trough and bowl systems are included

    Solar thermal electric power systems: final report, volume 3, appendices

    Get PDF
    Prepared for the National Science Foundation Research Applied to National Needs, Washington, D.C.Report: NSF/RANN/SE/Gl-37815/FR/74/3.CER74-75SK14 (Vol .3).November 1974.Includes bibliographical references.The final report consists of three volumes: (1) an Executive Summary, (2) System Studies and Economic Evaluations, and (3) Appendices. The objective of the research program is to develop design parameters of systems for thermal/mechanical conversion of solar energy to electric power at minimum cost per kilowatt-hour generated. Systems of 3MW to 300MW sizes in a public utility network are considered. Parametric performance and cost models are derived for key elements of the system. A sequential optimization program was developed using these models to determine optimum subsystem sets and combinations which yield the least capital cost plants. A dynamic simulation program was developed to determine annual electric power produced by solar power systems at specific locations. Electric energy cost comparisons are made to select promising systems for generation of electricity from solar energy.Supported by NSF grant GI-37815 initiated May 1, 1973

    Energy: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 1920 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System from July 1, 1980 through September 30, 1980

    Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology

    Get PDF
    The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape
    corecore