52 research outputs found

    Development of Multiscale Materials in Microfluidic Devices: Case Study for Viral Separation from Whole Blood

    Get PDF
    Separation and concentration of nanoscale species play an important role in various fields such as biotechnology, nanotechnology and environmental science. Inevitably, the separation efficiency strongly affects the quality of downstream detections or productions. For biotechnology and diagnostic applications, conventional separation techniques such as centrifugation, chromatography, filtration, and electrophoresis have been well established and the related instruments and reagents are readily available commercially. However, other factors such as cost, processing time, bulky instruments, infrastructure, and well trained technicians limit their applications in resource-limited settings. Consequently, innovations in materials science that can separate bionanoparticles efficiently and do not require complex setups, reagents or external fields are highly demanded. This work focuses on developing new materials for the affinity separation of bio-nanoparticles such as viruses or macromolecules from a complex mixture, such as whole blood. To enhance the interaction between target nanoparticles and the capture bed, methods to produce porous matrices with a uniform pore size matching the dimension of targets are studied. Furthermore, regarding viral separation from whole blood, macroporous materials are further patterned into microarrays to allow multiscale separation. Considering the needs in resource-limited settings, these materials are integrated with microfluidic technologies to reduce the volume of samples and reagents, simplify operating processes, and enable the use of inexpensive and portable components. Beyond the application of viral separation as demonstrated in the work, the fundamental study of macroporous material formation and transport in these materials also shed light to the separation of many other nanospecies in multiscale materials.Specifically, two macroporous materials, based on template synthesis, are created in this work. The first type employs porous anodic aluminum oxide (AAO) films as the template to create hexagonal arrays of nanoposts. However, pore sizes and interpore distances (cell size) of ordered porous AAO films are limited by the conventional fabrication process. Moreover, the process usually yields defective pore morphologies and large pore and cell size distributions. To overcome these limitations, a patterning method using nanobead indentation on aluminum substrate prior to anodization is evaluated to control the growth of AAO. Together with controlled anodizing voltages and electrolytic concentrations, AAO pore and cell sizes are shown to be tunable and controllable with narrow size distributions within submicron range. A high degree of order of AAO pore arrangement is also demonstrated. In addition, overall anodization becomes more time-efficient and stable at high anodizing voltages. Secondly, a three-dimensional (3D) assembly of microbeads is used as a template to fabricate a spherical pore network with small interconnected openings. After depositing and drying a suspension containing both micro- and nanobeads, the microbeads assemble into a 3D close-packed structure while the nanobeads fill the interstitial space. When the nanobeads are melted and microbeads are removed, a spherical pore matrix then form with small interconnected openings. Such the opening size is in submicron range can be adjusted depending on the size of microbead. The advantages of the two macroporous materials are not only controllable and tunable pore size, but also high surface-to-volume ratio due to the nanoscale features. With a ratio on the order of ~1 µm-1, the porous materials provide a significantly large binding surface. Computational and experimental results reveal that porous materials with a pore size matching the nanoparticle size are suitable for their capture. Separation of human immunodeficiency virus (HIV) is used as a model and capture yields of ~99 % and ~80 % are achieved in the nanopost structure and spherical pore network, respectively, after treated with a functional chemistry. Hence, the properties of these two macroporous materials are suitable as a size-exclusion and affinity separation for viral particles.To further explore multiscale separation, i.e. capturing viruses from whole blood, micropatterned arrays of macroporous materials have been designed. In this design, a microscale gap allows the passage of microparticles such as blood cells, and the nanoscale pores promote permeation for affinity capture of bionanoparticles. Consequently, particles with a size difference of 3-4 orders of magnitude can be separated in a simple flow-through process. Computational analyses are employed to study the effect of micropattern shape and layout. A half-ring pattern is shown to reduce flow resistance and promote fluid permeation compared to a circular pattern. In the experiment, the micropatterned porous arrays yield around 4 times higher viral capture from whole blood compared with a micropatterned solid array. The micropatterned porous devices are capable of handling a large volume of fluid sample without clogging by cells. Therefore they can be used for nanoparticle concentration. Our study also indicates that the layout of micropatterns can be adjusted to improve the capture yield. For example, an increase in pattern radius, or a decrease in gap distance between each post and in width of half ring will enhance fluid permeation in the porous structure. When combined with downstream detection, these materials integrated into microfluidic platforms can be created as point-of-care diagnostics, as well as other applications for particle separation and analysis

    Acoustic Manipulation and Alignment of Particles for Applications in Separation, Micro-Templating, and Device Fabrication

    Get PDF
    This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm

    Towards clinical application of urinary extracellular vesicles

    Get PDF

    Towards clinical application of urinary extracellular vesicles

    Get PDF

    Fabrication and Application of Flexible Sensors

    Get PDF
    A transfer printing method was developed to transfer carbon nanotubes (CNTs) from polyethylene terephthalate (PET) film to poly(dimethyl siloxane) (PDMS) polymer. Carbon nanotubes are composed of carbon atoms arranged in a honeycomb lattice structure, which are electrically conducting. When embedded in a nonconducting polymer, carbon nanotubes impart electrical conductivity to the nanocomposite, thus forming a nanocomposite that has potential applications in highly sensitive strain and pressure sensors. Several printing methods have been studied to deposit carbon nanotubes onto PDMS, including inkjet printing. Inkjet printing is a desirable deposition method since it is low-cost, simple, and allows the processing of aqueous-based inks. However, directly inkjet printing carbon nanotubes onto PDMS has been a challenge because the printed film becomes non-uniform due to the uneven drying of the droplets. Therefore, a method of transfer printing was developed to embed carbon nanotubes uniformly in PDMS. The transfer printing method consists of first inkjet printing patterns of carbon nanotubes onto a PET film, which quickly absorbs the aqueous ink and allows uniformity of the printed carbon nanotube patterns. The next step is spin-coating PDMS on the PET film to cover the carbon nanotube patterns, followed by curing the PDMS. The following step is thermally treating the PET film to promote the transfer of carbon nanotubes to PDMS, and finally peeling off PDMS from PET film to complete the transfer of carbon nanotube patterns. The transferred patterns had widths as small as 125 µm, while the obtained PDMS thickness was as low as 27.1 µm, which enabled the fabrication of highly sensitive force and pressure sensors. The transfer printing method was employed to fabricate a two-dimensional force sensor, which was composed of lines of carbon nanotubes in the x and y directions. The transduction mechanism lies in the generation of strain on the carbon nanotube pattern. When strain is produced, the resistance of the pattern changes due to the increase or decrease of the number of conduction paths in the carbon nanotube pattern. The practical application as a two-dimensional sensor was shown by monitoring the touch force exerted by multiple objects on the sensor. Due to the flexibility and stretchability of PDMS, fabricated air pressure sensors were capable of detecting small pressure differences. The sensors were composed of a circular diaphragm containing inkjet-printed carbon nanotube patterns. When air pressure increased on one side of the diaphragm, the deflection caused a strain on the CNT line, thus changing its resistance. Pressure sensors with a diaphragm diameter of five millimeters, diaphragm thickness of 27.1 µm showed sensitivity of 10.99 percent change in resistance per kilopascal (%/kPa) and limit of detection of 3.1 Pa. The pressure sensor has potential applications in monitoring minute air pressure differences such as those generated by the breathing pattern. The application of the highly sensitive and biocompatible pressure sensor was shown through the measurement of the pressure generated by a 3D-printed respiratory system

    3D Printed Microfluidic Devices

    Get PDF
    3D printing has revolutionized the microfabrication prototyping workflow over the past few years. With the recent improvements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols as a promising alternative to the time consuming, costly and sophisticated traditional cleanroom fabrication. Microfluidic devices have enabled a wide range of biochemical and clinical applications, such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. Using 3D printing fabrication technologies, alteration of the design features is significantly easier than traditional fabrication, enabling agile iterative design and facilitating rapid prototyping. This can make microfluidic technology more accessible to researchers in various fields and accelerates innovation in the field of microfluidics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in 3D printing and its use for various biochemical and biomedical applications

    Structural Elucidation of Membrane Proteins Involved in Photosynthesis

    Get PDF
    abstract: Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current methods of macromolecular crystallography and for exploring complimentary techniques. Since protein function is deeply associated with its structural dynamics, static position of atoms in a macromolecule are insufficient to unlock the mechanism. The availability of X-ray free electron lasers presents an opportunity to study micron-sized crystals that could be triggered (using light, small molecules or physical conditions) to capture macromolecules in action. This method of ‘Time-resolved serial crystallography’ answers key biological questions by capturing snapshots of conformational changes associated with multi-step reactions. This dissertation describes approaches for studying structures of large membrane protein complexes. Both macro and micro-seeding techniques have been implemented for improving crystal quality and obtaining high-resolution structures. Well-diffracting 15-20 micron crystals of active Photosystem II were used to perform time-resolved studies with fixed-target Roadrunner sample delivery system. By employing continuous diffraction obtained up to 2 A, significant progress can be made towards understanding the process of water oxidation. Structure of Photosystem I was solved to 2.3 A by X-ray crystallography and to medium resolution of 4.8 A using Cryogenic electron microscopy. Using complimentary techniques to study macromolecules provides an insight into differences among methods in structural biology. This helps in overcoming limitations of one specific technique and contributes in greater knowledge of the molecule under study.Dissertation/ThesisDoctoral Dissertation Biochemistry 201

    Investigation of Volatile Organic Compounds (VOCs) released as a result of spoilage in whole broccoli, carrots, onions and potatoes with HS-SPME and GC-MS

    Get PDF
    Vegetable spoilage renders a product undesirable due to changes in sensory characteristics. The aim of this study was to investigate the change in the fingerprint of VOC composition that occur as a result of spoilage in broccoli, carrots, onions and potatoes. SPME and GC-MS techniques were used to identify and determine the relative abundance of VOC associated with both fresh and spoilt vegetables. Although a number of similar compounds were detected in varying quantities in the headspace of fresh and spoilt samples, certain compounds which were detected in the headspace of spoilt vegetables were however absent in fresh samples. Analysis of the headspace of fresh vegetables indicated the presence of a variety of alkanes, alkenes and terpenes. Among VOCs identified in the spoilt samples were dimethyl disulphide and dimethyl sulphide in broccoli; Ethyl propanoate and Butyl acetate in carrots; 1-Propanethioland 2-Hexyl-5-methyl-3(2H)-furanone in onions; and 2, 3-Butanediol in potatoes. The overall results of this study indicate the presence of VOCs that can serve as potential biomarkers for early detection of quality deterioration and in turn enhance operational and quality control decisions in the vegetable industry

    The development of microfluidic based processes

    Get PDF
    Doctor of Science (DSc) thesis.Full version unavailable due to 3rd party copyright restrictions
    • …
    corecore