3,706 research outputs found

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k−2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k−2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    The Magic Number Problem for Subregular Language Families

    Full text link
    We investigate the magic number problem, that is, the question whether there exists a minimal n-state nondeterministic finite automaton (NFA) whose equivalent minimal deterministic finite automaton (DFA) has alpha states, for all n and alpha satisfying n less or equal to alpha less or equal to exp(2,n). A number alpha not satisfying this condition is called a magic number (for n). It was shown in [11] that no magic numbers exist for general regular languages, while in [5] trivial and non-trivial magic numbers for unary regular languages were identified. We obtain similar results for automata accepting subregular languages like, for example, combinational languages, star-free, prefix-, suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free languages, showing that there are only trivial magic numbers, when they exist. For finite languages we obtain some partial results showing that certain numbers are non-magic.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Two-Way Automata Making Choices Only at the Endmarkers

    Full text link
    The question of the state-size cost for simulation of two-way nondeterministic automata (2NFAs) by two-way deterministic automata (2DFAs) was raised in 1978 and, despite many attempts, it is still open. Subsequently, the problem was attacked by restricting the power of 2DFAs (e.g., using a restricted input head movement) to the degree for which it was already possible to derive some exponential gaps between the weaker model and the standard 2NFAs. Here we use an opposite approach, increasing the power of 2DFAs to the degree for which it is still possible to obtain a subexponential conversion from the stronger model to the standard 2DFAs. In particular, it turns out that subexponential conversion is possible for two-way automata that make nondeterministic choices only when the input head scans one of the input tape endmarkers. However, there is no restriction on the input head movement. This implies that an exponential gap between 2NFAs and 2DFAs can be obtained only for unrestricted 2NFAs using capabilities beyond the proposed new model. As an additional bonus, conversion into a machine for the complement of the original language is polynomial in this model. The same holds for making such machines self-verifying, halting, or unambiguous. Finally, any superpolynomial lower bound for the simulation of such machines by standard 2DFAs would imply LNL. In the same way, the alternating version of these machines is related to L =? NL =? P, the classical computational complexity problems.Comment: 23 page

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
    • …
    corecore