4,587 research outputs found

    Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

    Full text link
    We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are achieved. Saturation spectroscopy of coupled QDs is observed at 77K, highlighting the modified nanocrystal dynamics for quantum information processing.Comment: * new additional figures and text * 10 pages, 5 figure

    Highly photo-stable Perovskite nanocubes: towards integrated single photon sources based on tapered nanofibers

    Full text link
    The interest in perovskite nanocrystals (NCs) such as CsPbBr3_3 for quantum applications is rapidly raising, as it has been demonstrated that they can behave as very efficient single photon emitters. The main problem to tackle in this context is their photo-stability under optical excitation. In this article, we present a full analysis of the optical and quantum properties of highly efficient perovskite nanocubes synthesized with an established method, which is used for the first time to produce quantum emitters, and is shown to ensure an increased photostability. These emitters exhibit reduced blinking together with a strong photon antibunching. Remarkably these features are hardly affected by the increase of the excitation intensity well above the emission saturation levels. Finally, we achieve for the first time the coupling of a single perovskite nanocube with a tapered optical nanofiber in order to aim for a compact integrated single photon source for future applications

    Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna

    Full text link
    Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately

    Intensity-Dependent Enhancement of Saturable Absorption in PbS-Au4 Nanohybrid Composites: Evidence for Resonant Energy Transfer by Auger Recombination

    Full text link
    Intensity-dependent enhancement of saturable absorption in a film of PbS-Au4 nanohybrid composites has been observed by femtosecond time-resolved transient absorption measurement at 780 nm. The nonlinear absorption coefficient of saturable absorption in PbS-Au4 nanohybrid composites is found to be dependent on excitation irradiance and it is determined to be -2.9 cm/GW at 78 GW/cm2, an enhancement of nearly fourfold in comparison with that of pure PbS quantum dots (QDs). The enhancement is attributed to excitation of surface plasmon by resonant energy transfer between PbS QDs and Au nanoparticles through Auger recombination.Comment: 14 pages, 3 figures. Accepted in Appl. Phys. Lett. (2008

    Luminescence in sulfides : a rich history and a bright future

    Get PDF
    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles

    Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics

    Full text link
    Being a source of clean and renewable energy, the possibility to convert solar radiation in electric current with high efficiency is one of the most important topics of modern scientific research. Currently the exploitation of interaction between nanocrystals seems to be a promising route to foster the establishment of third generation photovoltaics. Here we adopt a fully ab-initio scheme to estimate the role of nanoparticle interplay on the carrier multiplication dynamics of interacting silicon nanocrystals. Energy and charge transfer-based carrier multiplication events are studied as a function of nanocrystal separation showing benefits induced by the wavefunction sharing regime. We prove the relevance of these recombinative mechanisms for photovoltaic applications in the case of silicon nanocrystals arranged in dense arrays, quantifying at an atomistic scale which conditions maximize the outcome.Comment: Supplementary materials are freely available onlin
    corecore