7,544 research outputs found

    Random graphs with few disjoint cycles

    Full text link
    The classical Erd\H{o}s-P\'{o}sa theorem states that for each positive integer k there is an f(k) such that, in each graph G which does not have k+1 disjoint cycles, there is a blocker of size at most f(k); that is, a set B of at most f(k) vertices such that G-B has no cycles. We show that, amongst all such graphs on vertex set {1,..,n}, all but an exponentially small proportion have a blocker of size k. We also give further properties of a random graph sampled uniformly from this class; concerning uniqueness of the blocker, connectivity, chromatic number and clique number. A key step in the proof of the main theorem is to show that there must be a blocker as in the Erd\H{o}s-P\'{o}sa theorem with the extra `redundancy' property that B-v is still a blocker for all but at most k vertices v in B

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions

    Get PDF
    We study the chromatic polynomial P_G(q) for m \times n square- and triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin--Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.Comment: 55 pages (LaTeX2e). Includes tex file, three sty files, and 22 Postscript figures. Also included are Mathematica files transfer4_sq.m and transfer4_tri.m. Journal versio

    Phase diagram of the chromatic polynomial on a torus

    Get PDF
    We study the zero-temperature partition function of the Potts antiferromagnet (i.e., the chromatic polynomial) on a torus using a transfer-matrix approach. We consider square- and triangular-lattice strips with fixed width L, arbitrary length N, and fully periodic boundary conditions. On the mathematical side, we obtain exact expressions for the chromatic polynomial of widths L=5,6,7 for the square and triangular lattices. On the physical side, we obtain the exact ``phase diagrams'' for these strips of width L and infinite length, and from these results we extract useful information about the infinite-volume phase diagram of this model: in particular, the number and position of the different phases.Comment: 72 pages (LaTeX2e). Includes tex file, three sty files, and 26 Postscript figures. Also included are Mathematica files transfer6_sq.m and transfer6_tri.m. Final version to appear in Nucl. Phys.
    corecore