6,117 research outputs found

    Optimal high-order methods for solving nonlinear equations

    Full text link
    A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana.Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2014). Optimal high-order methods for solving nonlinear equations. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/5916382014Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597Khan, Y., Fardi, M., & Sayevand, K. (2012). A new general eighth-order family of iterative methods for solving nonlinear equations. Applied Mathematics Letters, 25(12), 2262-2266. doi:10.1016/j.aml.2012.06.014Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Thukral, R. (2012). New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations. American Journal of Computational and Applied Mathematics, 2(3), 112-118. doi:10.5923/j.ajcam.20120203.08Sharma, J. R., Guha, R. K., & Gupta, P. (2013). Improved King’s methods with optimal order of convergence based on rational approximations. Applied Mathematics Letters, 26(4), 473-480. doi:10.1016/j.aml.2012.11.011Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    The general Li\'enard polynomial system

    Full text link
    In this paper, applying a canonical system with field rotation parameters and using geometric properties of the spirals filling the interior and exterior domains of limit cycles, we solve first the problem on the maximum number of limit cycles surrounding a unique singular point for an arbitrary polynomial system. Then, by means of the same bifurcationally geometric approach, we solve the limit cycle problem for a general Li\'enard polynomial system with an arbitrary (but finite) number of singular points. This is related to the solution of Hilbert's sixteenth problem on the maximum number and relative position of limit cycles for planar polynomial dynamical systems.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:math/061114

    Nonlinear analysis of pressure oscillations in ramjet engines

    Get PDF
    Pressure oscillations in ramjet engines have been studied using an approximate method which treats the flow fields in the inlet and the combustor separately. The acoustic fields in the combustor are expressed as syntheses of coupled nonlinear oscillators corresponding to the acoustic modes of the chamber. The influences of the inlet flow appear in the admittance function at the inlet /combustor interface, providing the necessary boundary condition for calculation of the combustor flow. A general framework dealing with nonlinear multi-degree-of-freedom system has also been constructed to study the time evolution of each mode. Both linear and nonlinear stabilities are treated. The results obtained serve as a basis for investigating the existence and stabilities of limit cycles for acoustic modes. As a specific example, the analysis is applied to a problem of nonlinear transverse oscillations in ramjet engines

    Complex Centers of Polynomial Differential Equations

    Full text link
    We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations an a local study of periodic solutions.Comment: 18 page

    An optimal sixteenth order family of methods for solving nonlinear equations and their basins of attraction

    Get PDF
    We propose a new family of iterative methods for finding the simple roots of nonlinear equation. The proposed method is four-point method with convergence order 16, which consists of four steps: the Newton step, an optional fourth order iteration scheme, an optional eighth order iteration scheme and the step constructed using the divided difference. By reason of the new iteration scheme requiring four function evaluations and one first derivative evaluation per iteration, the method satisfies the optimality criterion in the sense of Kung-Traub\u27s conjecture and achieves a high efficiency index 161/5approx1.741116^{1/5} approx 1.7411. Computational results support theoretical analysis and confirm the efficiency. The basins of attraction of the new presented algorithms are also compared to the existing methods with encouraging results
    corecore