84 research outputs found

    Experiments on in-channel swimming of an untethered biomimetic robot with different helical tails

    Get PDF
    Experiments are carried out with a cm-scale bio-mimetic swimming robot, which consists of a body and a rigid helical tail and mimics typical eukaryotic micro organisms, inside circular channels filled with viscous fluids. The body of the robot is made of a cylindrical capsule, which includes an onboard power supply, a dedicated DC-motor, and a driving circuitry with IR-receiver for remote control purposes. In experiments geometric parameters of the helical tail, wavelength and amplitude, and the diameter of the circular channels are varied to understand the effect of those parameters on the swimming speed of the robots. Models, based on slender body theory (SBT) and resistive force theory (RFT), are implemented to predict the swimming speeds, which are then compared with experimentally measured values. A simple model for the DC-motor dynamics is included to account for the contact friction effects on the body rotation rates. Model results agree reasonably well with experimental measurements

    Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents

    Get PDF

    MagNeed - Needle-Shaped Electromagnets for Localized Actuation Within Compact Workspaces

    Get PDF
    Electromagnetic actuation of micro-/milli-sized agents has traditionally relied on large electromagnets positioned at considerable distances from the agents. As a result, the electromagnets consume kilowatts of power to overcome the limited generation of magnetic field gradients. Miniaturized electromagnets offer an alternative approach for reducing power consumption via localized actuation of micro-/milli-sized agents. Typically, the generation of magnetic field gradients in the vicinity of a miniaturized electromagnet is comparable with traditional electromagnetic actuation systems. Miniaturized electromagnets can be positioned near target sites in microfluidic channels or ex vivo vasculatures. Thereby, localized trapping and actuation of magnetic micro-/milli-sized agents are carried out. This study introduces MagNeed - an electromagnetic actuation system composed of three needle-shaped electromagnets (NSEs). MagNeed can determine compact workspaces by positioning the NSEs at different spatial configurations. Each NSE generates magnetic field gradients (up to 3.5 T/m at 5 mm from the NSE tip axis) while keeping a maximum power consumption (0.5 W) and temperature (&lt; 42°C). MagNeed is complemented by a framework that reconstructs the pose of the NSEs. Experiments test MagNeed and framework on a transparent Teflon tube (5 mm inner diameter). MagNeed demonstrates localized trapping and actuation of a 1 mm NdFeB bead against a flow of water and silica gel particles (1-3 mm diameter).</p

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Magnetic Field-Based Technologies for Lab-on-a-Chip Applications

    Get PDF
    In the last decades, LOC technologies have represented a real breakthrough in the field of in vitro biochemical and biological analyses. However, the integration of really complex functions in a limited space results extremely challenging and proper working principles should be identified. In this sense, magnetic fields revealed to be extremely promising. Thanks to the exploitation of external magnetic sources and to the integration of magnetic materials, mainly high aspect ratio micro-/nanoparticles, non-contact manipulation of biological and chemical samples can be enabled. In this chapter, magnetic field-based technologies, their basic theory, and main applications in LOC scenario will be described by foreseeing also a deeper interaction/integration with the typical technologies of microrobotics. Attention will be focused on magnetic separation and manipulation, by taking examples coming from traditional LOC devices and from microrobotics
    • …
    corecore