3,024 research outputs found

    Situational impairments to mobile interaction in cold environments

    Full text link
    Abstract We evaluate the situational impairments caused by cold ambient temperature on fine-motor movement and vigilance during mobile interaction. For this purpose, we tested two mobile phone applications that measure fine motor skills and vigilance in controlled temperature settings. Our results show that cold adversely affected participants’ fine-motor skills performance, but not vigilance. Based on our results we highlight the importance of correcting measurements when investigating performance of cognitive tasks to take into account the physical element of the tasks. Finally, we identify a number of design recommendations from literature that can mitigate the adverse effect of cold ambiance on interaction with mobile devices

    Evaluating Conversational User Interfaces when Mobil

    Get PDF

    Addressing the Challenges of Situationally-Induced Impairments and Disabilities in Mobile Interaction

    Get PDF
    Situationally-induced impairments and disabilities (SIIDs) make it difficult for users of interactive computing systems to perform tasks due to context (e.g., listening to a phone call when in a noisy crowd) rather than a result of a congenital or acquired impairment (e.g., hearing damage). SIIDs are a great concern when considering the ubiquitousness of technology in a wide range of contexts. Considering our daily reliance on technology, and mobile technology in particular, it is increasingly important that we fully understand and model how SIIDs occur. Similarly, we must identify appropriate methods for sensing and adapting technology to reduce the effects of SIIDs. In this workshop, we will bring together researchers working on understanding, sensing, modelling, and adapting technologies to ameliorate the effects of SIIDs. This workshop will provide a venue to identify existing research gaps, new directions for future research, and opportunities for future collaboration

    Towards a multidisciplinary user-centric design framework for context-aware applications

    Get PDF
    The primary aim of this article is to review and merge theories of context within linguistics, computer science, and psychology, to propose a multidisciplinary model of context that would facilitate application developers in developing richer descriptions or scenarios of how a context-aware device may be used in various dynamic mobile settings. More specifically, the aim is to:1. Investigate different viewpoints of context within linguistics, computer science, and psychology, to develop summary condensed models for each discipline. 2. Investigate the impact of contrasting viewpoints on the usability of context-aware applications. 3. Investigate the extent to which single-discipline models can be merged and the benefits and insightfulness of a merged model for designing mobile computers. 4. Investigate the extent to which a proposed multidisciplinary modelcan be applied to specific applications of context-aware computing

    Toward a multidisciplinary model of context to support context-aware computing

    Get PDF
    Capturing, defining, and modeling the essence of context are challenging, compelling, and prominent issues for interdisciplinary research and discussion. The roots of its emergence lie in the inconsistencies and ambivalent definitions across and within different research specializations (e.g., philosophy, psychology, pragmatics, linguistics, computer science, and artificial intelligence). Within the area of computer science, the advent of mobile context-aware computing has stimulated broad and contrasting interpretations due to the shift from traditional static desktop computing to heterogeneous mobile environments. This transition poses many challenging, complex, and largely unanswered research issues relating to contextual interactions and usability. To address those issues, many researchers strongly encourage a multidisciplinary approach. The primary aim of this article is to review and unify theories of context within linguistics, computer science, and psychology. Summary models within each discipline are used to propose an outline and detailed multidisciplinary model of context involving (a) the differentiation of focal and contextual aspects of the user and application's world, (b) the separation of meaningful and incidental dimensions, and (c) important user and application processes. The models provide an important foundation in which complex mobile scenarios can be conceptualized and key human and social issues can be identified. The models were then applied to different applications of context-aware computing involving user communities and mobile tourist guides. The authors' future work involves developing a user-centered multidisciplinary design framework (based on their proposed models). This will be used to design a large-scale user study investigating the usability issues of a context-aware mobile computing navigation aid for visually impaired people

    Exploring the effects of below-freezing temperatures on smartphone usage

    Get PDF
    While the use of smartphones in extreme temperatures does not necessarily occur every day nor in all parts of the world, numerous use cases can be highlighted where the use of smartphones in cold temperatures is mandatory. Modern smartphones are designed to function in a wide range of temperatures, but when exposed to extreme cold temperatures the performance and reliability can significantly suffer. This paper presents a controlled laboratory experiment, using a clinical cold chamber to expose seven smartphone models to both medium cold (0 degrees C to -20 degrees C) and extreme cold (-30 degrees C) environments. The results showcase the smartphones' sensing software's lack of awareness of the cold environment, as well as reliability issues in the form of device crashes across the whole range of tested devices. We present a strategy for implementing monitoring application designs to both appropriately sense the effect of cold environments, as well as predicting device shutdowns in extreme cold. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe
    • …
    corecore