7,647 research outputs found

    Aircraft Loss-of-Control: Analysis and Requirements for Future Safety-Critical Systems and Their Validation

    Get PDF
    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies

    Robotics and IoT: Interdisciplinary Applied Research in the RIoT Zone

    Get PDF
    Short Abstract: Robotics and the Internet of Things are intrinsically multi-disciplinary subjects that investigate the interaction between the physical and the cyber worlds and how they impact society. As a result, they not only demand careful consideration of digital and analog technologies, but also the human element. The “RIoT Zone” brings together disparate people and ideas to address intuitive autonomy. Full Abstract: Robotics and the Internet of Things are intrinsically multi-disciplinary subjects that investigate the interaction between the physical and the cyber worlds and how they impact society. As a result, they not only demand careful consideration of digital and analog technologies, but also the human element. The “RIoT Zone” brings together disparate people and ideas to address a human-centric form of intelligence we call “intuitive autonomy”. This talk will describe human/robot interaction and the programming of robots by human demonstration from the perspectives of Engineering Technology, Computer Information Technology, Industrial Engineering and Psychology

    A Review of Prognostics and Health Management Applications in Nuclear Power Plants

    Get PDF
    The US operating fleet of light water reactors (LWRs) is currently undergoing life extensions from the original 40-year license to 60 years of operation. In the US, 74 reactors have been approved for the first round license extension, and 19 additional applications are currently under review. Safe and economic operation of these plants beyond 60 years is now being considered in anticipation of a second round of license extensions to 80 years of operation.Greater situational awareness of key systems, structures, and components (SSCs) can provide the technical basis for extending the life of SSCs beyond the original design life and supports improvements in both safety and economics by supporting optimized maintenance planning and power uprates. These issues are not specific to the aging LWRs; future reactors (including Generation III+ LWRs, advanced reactors, small modular reactors, and fast reactors) can benefit from the same situational awareness. In fact, many SMR and advanced reactor designs have increased operating cycles (typically four years up to forty years), which reduce the opportunities for inspection and maintenance at frequent, scheduled outages. Understanding of the current condition of key equipment and the expected evolution of degradation during the next operating cycle allows for targeted inspection and maintenance activities. This article reviews the state of the art and the state of practice of prognostics and health management (PHM) for nuclear power systems. Key research needs and technical gaps are highlighted that must be addressed in order to fully realize the benefits of PHM in nuclear facilities

    Situational modelling of oil pollution risks monitored by distributed monitoring

    Get PDF
    The work is studying the distributed system of natural environment monitoring points. The purpose of the study is to solve two main problems of optimization: a) optimization of risks of emergency events; b) optimal cessation of environmental monitoring, which allows to reduce the costs of observation. Monitoring of the environment contaminated with petroleum products is relevant. Traditionally used methods and monitoring itself are expensive and technological complex mechanisms, often requiring satellite data. When studying environmental pollution, it is important to consider situational risks and stochastic irreversible changes in nature. For this purpose, it is necessary to apply the methods and methodology of the system approach, which are used in the article for analysis of complex data structures and entropy of the system. For the informativeness of less long monitoring, it's represented by four main subsystems (capture, operation, selection and decision-making) and evaluated using an information-entropy approach. The work will solve the practical task of monitoring the contaminated environment
    corecore