191,994 research outputs found

    Generating Multimedia Components for M-Learning

    Get PDF
    The paper proposes a solution to generate template based multimedia components for instruction and learning available both for computer based applications and for mobile devices. The field of research is situated at the intersection of computer science, mobile tools and e-learning and is generically named mobile learning or M-learning. The research goal is to provide access to computer based training resources from any location and to adapt the training content to the specific features of mobile devices, communication environment, users' preferences and users' knowledge. To become important tools in education field, the technical solutions proposed will follow to use the potential of mobile devices.M-learning, mobile devices, MPEG-21 standard, multimedia databases

    Generating Multimedia Components for M-Learning

    Get PDF
    The paper proposes a solution to generate template based multimedia components for instruction and learning available both for computer based applications and for mobile devices. The field of research is situated at the intersection of computer science, mobile tools and e-learning and is generically named mobile learning or M-learning. The research goal is to provide access to computer based training resources from any location and to adapt the training content to the specific features of mobile devices, communication environment, users' preferences and users' knowledge. To become important tools in education field, the technical solutions proposed will follow to use the potential of mobile devices

    A teacher training on Geosciences in Virtual Worlds

    Get PDF
    Today the education environments, in which training takes place, are various and this aspect has allowed the creation of different learning ways according to the different styles of students' learning. The virtual worlds can be an innovative approach to training experience for science teachers, in order to respond to different styles of students' learning in their classrooms. The virtual worlds are multiuser environments, three dimensional, in which an immersive experience takes place through a simulation of the physical presence online with an avatar, a digital representation of a user. In this type of environment we obtain an immersive learning which represent a learning with a technology in which the user, through a computer screen, feels to live a real experience, of "being" there. Today, the effectiveness of the use of 3D environments for science education is share in the literature as well. These environments have a high degree of immersion and presence. Their features are the elarning by doing and situated learning, so they represent a new strategy to innovate science teaching and to improve motivation and the scientific skills of the students

    Empirical modelling principles to support learning in a cultural context

    Get PDF
    Much research on pedagogy stresses the need for a broad perspective on learning. Such a perspective might take account (for instance) of the experience that informs knowledge and understanding [Tur91], the situation in which the learning activity takes place [Lav88], and the influence of multiple intelligences [Gar83]. Educational technology appears to hold great promise in this connection. Computer-related technologies such as new media, the internet, virtual reality and brain-mediated communication afford access to a range of learning resources that grows ever wider in its scope and supports ever more sophisticated interactions. Whether educational technology is fulfilling its potential in broadening the horizons for learning activity is more controversial. Though some see the successful development of radically new educational resources as merely a matter of time, investment and engineering, there are also many critics of the trends in computer-based learning who see little evidence of the greater degree of human engagement to which new technologies aspire [Tal95]. This paper reviews the potential application to educational technology of principles and tools for computer-based modelling that have been developed under the auspices of the Empirical Modelling (EM) project at Warwick [EMweb]. This theme was first addressed at length in a previous paper [Bey97], and is here revisited in the light of new practical developments in EM both in respect of tools and of model-building that has been targetted at education at various levels. Our central thesis is that the problems of educational technology stem from the limitations of current conceptual frameworks and tool support for the essential cognitive model building activity, and that tackling these problems requires a radical shift in philosophical perspective on the nature and role of empirical knowledge that has significant practical implications. The paper is in two main sections. The first discusses the limitations of the classical computer science perspective where educational technology to support situated learning is concerned, and relates the learning activities that are most closely associated with a cultural context to the empiricist perspective on learning introduced in [Bey97]. The second outlines the principles of EM and describes and illustrates features of its practical application that are particularly well-suited to learning in a cultural setting

    A bridge over the computer science graduate skill gap

    Get PDF
    Paper presented at X World Conference on Computers in Education, 2-5 July 2013; Toruń, PolandUniversities are increasingly required to respond to the ever evolving needs of an ever more sophisticated and globalised workplace, which requires well-rounded workers with more than mere technical knowledge. Employers expect their prospective employees to already have acquired a range of professional and personal skills. Universities face a challenge in helping students to develop these skills and it is debatable whether this can be achieved within the university environment. What is needed is a way for students to interact with the outside world as part of their undergraduate programme in a situated learning environment. This paper reports on a computer science assignment specifically designed to develop professional and personal as well as discipline-specific skills. The results suggest that situated learning assignments are indeed able to enhance the development of precisely those soft skills which are so valued by employers

    Self-directed multimodal learning in higher education

    Get PDF
    This book aims to provide an overview of theoretical and practical considerations in terms of self-directed multimodal learning within the university context. Multimodal learning is approached in terms of the levels of multimodality and specifically blended learning and the mixing of modes of delivery (contact and distance education). As such, this publication will provide a unique snapshot of multimodal practices within higher education through a self-directed learning epistemological lens. The book covers issues such as what self-directed multimodal learning entails, mapping of specific publications regarding blended learning, blended learning in mathematics, geography, natural science and computer literacy, comparative experiences in distance education as well as situated and culturally appropriate learning in multimodal contexts. This book provides a unique focus on multimodality in terms of learning and delivery within the context of self-directed learning. Therefore, the publication would not only advance the scholarship of blended and open distance learning in South Africa, but also the contribute to enriching the discourse regarding self-direction. From this book readers will get an impression of the latest trends in literature in terms of multimodal self-directed learning in South Africa as well as unique empirical work being done in this regard

    Self-directed multimodal learning in higher education

    Get PDF
    This book aims to provide an overview of theoretical and practical considerations in terms of self-directed multimodal learning within the university context. Multimodal learning is approached in terms of the levels of multimodality and specifically blended learning and the mixing of modes of delivery (contact and distance education). As such, this publication will provide a unique snapshot of multimodal practices within higher education through a self-directed learning epistemological lens. The book covers issues such as what self-directed multimodal learning entails, mapping of specific publications regarding blended learning, blended learning in mathematics, geography, natural science and computer literacy, comparative experiences in distance education as well as situated and culturally appropriate learning in multimodal contexts. This book provides a unique focus on multimodality in terms of learning and delivery within the context of self-directed learning. Therefore, the publication would not only advance the scholarship of blended and open distance learning in South Africa, but also the contribute to enriching the discourse regarding self-direction. From this book readers will get an impression of the latest trends in literature in terms of multimodal self-directed learning in South Africa as well as unique empirical work being done in this regard

    The unexplored potential of virtual reality for cultural learning

    Full text link
    [EN] Educational technology tools that improve learning and foster engagement are constantly sought by teachers and researchers. In the domain of Computer-Assisted Language Learning a variety of tools, for instance blogs and podcasts, have been used to promote language and cultural learning (Shih, 2015). More recently, virtual reality has been identified as a technology with great potential for the creation of meaningful and contextualized learning experiences. Despite the  learning affordances of virtual reality, in language education most of the literature has focused on the low-immersive version, whereas research investigating highly immersive virtual environments has only emerged in recent years (e.g., Berti, 2019; Blyth, 2018). In other fields, the use of highly immersive virtual reality has been compared to traditional pedagogical resources and demonstrated that students’ learning improved with the use of virtual environments as compared to two-dimensional video and textbook learning conditions (Allcoat & von Mühlenen, 2018). Considering the potential learning benefits of this technology, this paper argues that longitudinal empirical research in language education is strongly needed to investigate its potential unexplored impact on language and cultural learning.Berti, M. (2021). The unexplored potential of virtual reality for cultural learning. The EuroCALL Review. 29(1):60-67. https://doi.org/10.4995/eurocall.2021.12809OJS6067291Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion, and engagement. Research in Learning Technology, 26, 1-13. https://doi.org/10.25304/rlt.v26.2140Barab, S. A., Hay, K. E., & Duffy, T. M. (1998). Grounded constructions and how technology can help. TechTrends, 43(2), 15-23. https://doi.org/10.1007/BF02818171Berti, M. (2019). Italian open education: virtual reality immersions for the language classroom. New Case Studies of Openness in and beyond the Language Classroom, Research-publishing. net, 37-47. https://doi.org/10.14705/rpnet.2019.37.965Blyth, C. (2018). Immersive technologies and language learning. Foreign Language Annals, 51(1), 225-232. https://doi.org/10.1111/flan.12327Chen, C. J. (2009). Theoretical bases for using virtual reality in education. Themes in Science and Technology Education, 2(1-2), 71-90.Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 723-734). New York: Springer. https://doi.org/10.1007/978-1-4614-3185-5_58Fowler, C. (2015). Virtual reality and learning: Where is the pedagogy? British Journal of Educational Technology, 46(2), 412-422. https://doi.org/10.1111/bjet.12135Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. eLearning & Software for Education, 1, 133-141.Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners' attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014Jacobson, J. (2017). Authenticity in immersive design. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual, augmented, and mixed realities in education (pp. 35-54). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_3Lin, T. J., & Lan, Y. J. (2015). Language learning in virtual reality environments: Past, present, and future. Journal of Educational Technology & Society, 18(4), 486-497.Liu, D., Bhagat, K. K., Gao, Y., Chang, T., & Huang, R. (2017). The potentials and trends of virtual reality in education. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual augmented, and mixed realities in education (pp. 105-130). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_7Lloyd, A., Rogerson, S., & Stead, G. (2017). Imagining the potential for using virtual reality technologies in language learning. In M. Carrier, R. M. Damerow, & K. M. Bailey (Eds.), Digital language learning and teaching: Research, theory, and practice (pp. 222-234). Abingdon: Routledge. https://doi.org/10.4324/9781315523293-19Sadler, R. (2017). Virtual worlds and language education. In S. L. Thorne & S. May (Eds.), Language, education and technology (pp. 375-388). New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-02237-6_29Schott, C., & Marshall, S. (2018). Virtual reality and situated experiential education: A conceptualization and exploratory trial. Journal of Computer Assisted Learning, 34(6), 843-852. https://doi.org/10.1111/jcal.12293Schwienhorst, K. (2002a). The state of VR: A meta-analysis of virtual reality tools in second language acquisition. Computer Assisted Language Learning, 15(3), 221-239. https://doi.org/10.1076/call.15.3.221.8186Schwienhorst, K. (2002b). Why virtual, why environments? Implementing virtual reality concepts in computer-assisted language learning. Simulation & Gaming, 33(2), 196-209. https://doi.org/10.1177/1046878102033002008Scrivner, O., Madewell, J., Buckley, C., & Perez, N. (2019). Best practices in the use of augmented and virtual reality technologies for SLA: Design, implementation, and feedback. In M. L. Carrió-Pastor (Ed.), Teaching language and teaching literature in virtual environments (pp. 55-72). New York: Springer. https://doi.org/10.1007/978-981-13-1358-5_4Shih, Y. C. (2015). A virtual walk-through London: Culture learning through a cultural immersion experience. Computer Assisted Language Learning, 28(5), 407-428. https://doi.org/10.1080/09588221.2013.851703Shih, Y. C. (2018). Contextualizing language learning with street view panoramas. In Y. Qian (Ed.), Integrating multi-user virtual environments in modern classrooms (pp. 74-91). Hershey: IGI Global. https://doi.org/10.4018/978-1-5225-3719-9.ch004Slater, M. & Wilbur, S. (1996). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603- 616. https://doi.org/10.1162/pres.1997.6.6.60
    • …
    corecore