41,523 research outputs found

    Comprehensive Monosynaptic Rabies Virus Mapping of Host Connectivity with Neural Progenitor Grafts after Spinal Cord Injury.

    Get PDF
    Neural progenitor cells grafted to sites of spinal cord injury have supported electrophysiological and functional recovery in several studies. Mechanisms associated with graft-related improvements in outcome appear dependent on functional synaptic integration of graft and host systems, although the extent and diversity of synaptic integration of grafts with hosts are unknown. Using transgenic mouse spinal neural progenitor cell grafts expressing the TVA and G-protein components of the modified rabies virus system, we initiated monosynaptic tracing strictly from graft neurons placed in sites of cervical spinal cord injury. We find that graft neurons receive synaptic inputs from virtually every known host system that normally innervates the spinal cord, including numerous cortical, brainstem, spinal cord, and dorsal root ganglia inputs. Thus, implanted neural progenitor cells receive an extensive range of host neural inputs to the injury site, potentially enabling functional restoration across multiple systems

    NMDA Currents Modulate the Synaptic Input–Output Functions of Neurons in the Dorsal Nucleus of the Lateral Lemniscus in Mongolian Gerbils

    Get PDF
    Neurons in the dorsal nucleus of the lateral lemniscus (DNLL) receive excitatory and inhibitory inputs from the superior olivary complex (SOC) and convey GABAergic inhibition to the contralateral DNLL and the inferior colliculi. Unlike the fast glycinergic inhibition in the SOC, this GABAergic inhibition outlasts auditory stimulation by tens of milliseconds. Two mechanisms have been postulated to explain this persistent inhibition. One, an “integration-based” mechanism, suggests that postsynaptic excitatory integration in DNLL neurons generates prolonged activity, and the other favors the synaptic time course of the DNLL output itself. The feasibility of the integration-based mechanism was tested in vitro in DNLL neurons of Mongolian gerbils by quantifying the cellular excitability and synaptic input–output functions (IO-Fs). All neurons were sustained firing and generated a near monotonic IO-F on current injections. From synaptic stimulations, we estimate that activation of approximately five fibers, each on average liberating ∼18 vesicles, is sufficient to trigger a single postsynaptic action potential. A strong single pulse of afferent fiber stimulation triggered multiple postsynaptic action potentials. The steepness of the synaptic IO-F was dependent on the synaptic NMDA component. The synaptic NMDA receptor current defines the slope of the synaptic IO-F by enhancing the temporal and spatial EPSP summation. Blocking this NMDA-dependent amplification during postsynaptic integration of train stimulations resulted into a ∼20% reduction of the decay time course of the GABAergic inhibition. Thus, our data show that the NMDA-dependent amplification of the postsynaptic activity contributes to the GABAergic persistent inhibition generated by DNLL neurons

    Cortical region interactions and the functional role of apical dendrites

    Get PDF
    The basal and distal apical dendrites of pyramidal cells occupy distinct cortical layers and are targeted by axons originating in different cortical regions. Hence, apical and basal dendrites receive information from distinct sources. Physiological evidence suggests that this anatomically observed segregation of input sources may have functional significance. This possibility has been explored in various connectionist models that employ neurons with functionally distinct apical and basal compartments. A neuron in which separate sets of inputs can be integrated independently has the potential to operate in a variety of ways which are not possible for the conventional model of a neuron in which all inputs are treated equally. This article thus considers how functionally distinct apical and basal dendrites can contribute to the information processing capacities of single neurons and, in particular, how information from different cortical regions could have disparate affects on neural activity and learning

    Rosetta Brains: A Strategy for Molecularly-Annotated Connectomics

    Full text link
    We propose a neural connectomics strategy called Fluorescent In-Situ Sequencing of Barcoded Individual Neuronal Connections (FISSEQ-BOINC), leveraging fluorescent in situ nucleic acid sequencing in fixed tissue (FISSEQ). FISSEQ-BOINC exhibits different properties from BOINC, which relies on bulk nucleic acid sequencing. FISSEQ-BOINC could become a scalable approach for mapping whole-mammalian-brain connectomes with rich molecular annotations

    Network structure determines patterns of network reorganization during adult neurogenesis

    Full text link
    New cells are generated throughout life and integrate into the hippocampus via the process of adult neurogenesis. Epileptogenic brain injury induces many structural changes in the hippocampus, including the death of interneurons and altered connectivity patterns. The pathological neurogenic niche is associated with aberrant neurogenesis, though the role of the network-level changes in development of epilepsy is not well understood. In this paper, we use computational simulations to investigate the effect of network environment on structural and functional outcomes of neurogenesis. We find that small-world networks with external stimulus are able to be augmented by activity-seeking neurons in a manner that enhances activity at the stimulated sites without altering the network as a whole. However, when inhibition is decreased or connectivity patterns are changed, new cells are both less responsive to stimulus and the new cells are more likely to drive the network into bursting dynamics. Our results suggest that network-level changes caused by epileptogenic injury can create an environment where neurogenic reorganization can induce or intensify epileptic dynamics and abnormal integration of new cells.Comment: 28 pages, 10 figure

    Statistical mechanics of neocortical interactions: large-scale EEG influences on molecular processes

    Get PDF
    Recent calculations further supports the premise that large-scale synchronous firings of neurons may affect molecular processes. The context is scalp electroencephalography (EEG) during short-term memory (STM) tasks. The mechanism considered is Π=p+qA\mathbf{\Pi} = \mathbf{p} + q \mathbf{A} (SI units) coupling, where p\mathbf{p} is the momenta of free Ca2+\mathrm{Ca}^{2+} waves qq the charge of Ca2+\mathrm{Ca}^{2+} in units of the electron charge, and A\mathbf{A} the magnetic vector potential of current I\mathbf{I} from neuronal minicolumnar firings considered as wires, giving rise to EEG. Data has processed using multiple graphs to identify sections of data to which spline-Laplacian transformations are applied, to fit the statistical mechanics of neocortical interactions (SMNI) model to EEG data, sensitive to synaptic interactions subject to modification by Ca2+\mathrm{Ca}^{2+} waves.Comment: Accepted for publication in Journal of Theoretical Biolog

    Gated rotation mechanism of site-specific recombination by ϕC31 integrase

    Get PDF
    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round

    Maintenance of cell type-specific connectivity and circuit function requires Tao kinase

    Get PDF
    Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth
    • …
    corecore