1,244 research outputs found

    Data partitioning and load balancing in parallel disk systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent file system that optimizes striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces

    PASSION: Parallel And Scalable Software for Input-Output

    Get PDF
    We are developing a software system called PASSION: Parallel And Scalable Software for Input-Output which provides software support for high performance parallel I/O. PASSION provides support at the language, compiler, runtime as well as file system level. PASSION provides runtime procedures for parallel access to files (read/write), as well as for out-of-core computations. These routines can either be used together with a compiler to translate out-of-core data parallel programs written in a language like HPF, or used directly by application programmers. A number of optimizations such as Two-Phase Access, Data Sieving, Data Prefetching and Data Reuse have been incorporated in the PASSION Runtime Library for improved performance. PASSION also provides an initial framework for runtime support for out-of-core irregular problems. The goal of the PASSION compiler is to automatically translate out- of-core data parallel programs to node programs for distributed memory machines, with calls to the PASSION Runtime Library. At the language level, PASSION suggests extensions to HPF for out-of-core programs. At the file system level, PASSION provides support for buffering and prefetching data from disks. A portable parallel file system is also being developed as part of this project, which can be used across homogeneous or heterogeneous networks of workstations. PASSION also provides support for integrating data and task parallelism using parallel I/O techniques. We have used PASSION to implement a number of out-of-core applications such as a Laplace\u27s equation solver, 2D FFT, Matrix Multiplication, LU Decomposition, image processing applications as well as unstructured mesh kernels in molecular dynamics and computational fluid dynamics. We are currently in the process of using PASSION in applications in CFD (3D turbulent flows), molecular structure calculations, seismic computations, and earth and space science applications such as Four-Dimensional Data Assimilation. PASSION is currently available on the Intel Paragon, Touchstone Delta and iPSC/860. Efforts are underway to port it to the IBM SP-1 and SP-2 using the Vesta Parallel File System

    A Business Continuity Solution for Telecommunications Billing Systems

    Get PDF
    The billing system is a critical component in a Telecommunications service provider\u27s suite of business support systems - without the billing system the provider cannot invoice their customers for services provided and therefore cannot generate revenue. Typically billing systems are hosted on a single large Unix/Oracle system located in the company\u27s data centre. Modern Unix servers with their redundant components and hot swap parts are highly resilient and can provide levels of availability when correctly installed in properly managed data centre with uninterruptible power supplies, cooling etc. High Availability clustering through the use of HP MC/ServiceGuard, Sun Cluster, IBM HACMP (High Availability Cluster Multi-Processing) or Oracle Clusterware/RAC (Real Application clusters) can bring this level of availability even higher. This approach however can only protect against the failure of a single server or component of the system, it cannot protect against the loss of an entire data centre in the event of a disaster such as a fire, flood or earthquake. In order to protect against such disasters it is necessary to provide some form of backup system on a site sufficiently remote from the primary site so that it would not be affected by any disaster, which might befall the primary site. This paper proposes a cost effective business continuity solution to protect a Telecommunications Billing system from the effects of unplanned downtime due to server or site outages. It is aimed at the smaller scale tier 2 and tier 3 providers such as Mobile Virtual Network Operators (MVNOs) and startup Competitive Local Exchange Carriers (CLECs) who are unlikely to have large established IT systems with business continuity features and for whom cost effectiveness is a key concern when implementing IT systems

    Data partitioning and load balancing in parallel disk systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent file system that optimizes striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Building high-performance web-caching servers

    Get PDF

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    Redundant disk arrays: Reliable, parallel secondary storage

    Get PDF
    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures
    • …
    corecore