431 research outputs found

    Harmonic compensation in a grid using doubly fed induction generators

    Get PDF
    Ideally, electric utilities are expected to deliver a sinusoidal voltage with a constant rated frequency, while customers are expected to draw a sinusoidal current with unity power factor. The recent widespread use of harmonic producing equipment in industrial applications, especially non-linear loads, has increased the distortion of electric currents and voltages in transmission and distribution systems. This thesis proposes a method of using multiple reference frame theory for measuring and mitigating harmonic currents of nonlinear loads using a doubly fed induction generator. The most significant low-order harmonics to be compensated are calculated using a multiple reference frame harmonic observer. This observer is simulated using Matlab® Simulink® and then implemented using the Texas Instruments TMS320F28335 digital signal processor. Experimental and simulation results are provided to verify the analysis of the observer by comparing the results with calculations from the Fourier spectrum. Along with active and reactive power generation, an algorithm is proposed to inject currents in the rotor for the mitigation of harmonics in the system. Simulation results are presented to demonstrate the performance of this proposed method. These results validate the effectiveness of the method in compensating the targeted harmonics in the system. This method of measuring and compensating harmonics discussed in this thesis is accurate, straightforward, easily implemented and effective in the mitigation of any harmonic in the system. The currents obtained in the fundamental reference frame can be further employed for the control of active and reactive power flow --Abstract, page iii

    Modeling and Control of a Doubly-Fed Induction Generator for Wind Turbine-Generator Systems

    Get PDF
    Wind energy plays an increasingly important role in the world because it is friendly to the environment. During the last decades, the concept of a variable-speed wind turbine (WT) has been receiving increasing attention due to the fact that it is more controllable and efficient, and has good power quality. As the demand of controllability of variable speed WTs increases, it is therefore important and necessary to investigate the modeling for wind turbine-generator systems (WTGS) that are capable of accurately simulating the behavior of each component in the WTGS. Therefore, this thesis will provide detailed models of a grid-connected wind turbine system equipped with a doubly-fed induction generator (DFIG), which includes the aerodynamic models of the wind turbine, the models of the mechanical transmission system, the DFIG models and the three-phase two-level PWM voltage source converter models. In order to obtain satisfying output power from the WTGS, control strategies are also necessary to be developed based on the previously obtained WTGS models. These control schemes include the grid-side converter control, the generator-side converter control, the maximum power point tracking control and the pitch angle control. The grid-side converter controller is used to keep the DC-link voltage constant and yield a unity power factor looking into the WTGS from the grid-side. The generator-side converter controller has the ability of regulating the torque, active power and reactive power. The maximum power point tracking control is used to provide the reference values for the active power at the stator terminals. The pitch angle control scheme is used to regulate the pitch angle and thus keep the output power at rated value even when the wind speed experiences gusts. Various studies in the literature have reported that two-level converters have several disadvantages compared with three-level converters. Among the disadvantages are high switching losses, high dv/dt, and high total harmonic distortion (THD). Hence, the models and field oriented control schemes for three-level neutral-point-clamped (NPC) converters are also investigated and applied to a WTGS. Besides, an advanced modulation technology, namely, space vector PWM (SVPWM), is also investigated and compared to traditional sinusoidal PWM in a WTGS

    Direct Power Magnitude Control of DFIG-DC System Without Orientation Control

    Get PDF

    A Simplified Stator Frequency and Power Control Method of DFIG-DC System Without Stator Voltage and Current Sensors

    Get PDF

    Rotor Current Oriented Control Method of DFIG-DC System Without Stator Side Sensors

    Get PDF

    Voltage sensorless based virtual flux control of three level NPC back-to-back converter dfigunder grid fault

    Get PDF
    In this paper, a harmonic elimination of grid and stator currents of doubly fed induction generator (DFIG) in case of grid fault without line voltage sensors is proposed . This can be achieved by compensating power based on virtual flux voltage sensorless technique. Direct power control with space vector modulation (DPC-SVM) is used to control both grid-side (GSC)and rotor-side converters (RSC). To achieve the control objective, compensated active and reactive powers are calculated based on virtual flux technique with balanced and harmonic free current as a control target. A theoretical analysis of active and reactive powers under unbalanced voltage source is clearly demonstrated and the effect of grid fault on the performance of DFIG is profoundly discussed. Simulation results verified the effectiveness of the modified control strategy

    A Unified Power Control Method for Standalone and Grid Connected DFIG-DC System

    Get PDF

    Comparison of doubly-fed induction generator and brushless doubly-fed reluctance generator for wind energy applications

    Get PDF
    Phd ThesisThe Doubly-fed Induction Generator (DFIG) is the dominant technology for variable-speed wind power generation due in part to its cost-effective partially-rated power converter. However, the maintenance requirements and potential failure of brushes and slip rings is a significant disadvantage of DFIG. This has led to increased interest in brushless doubly-fed generators. In this thesis a Brushless Doubly-Fed Reluctance Generator (BDFRG) is compared with DFIG from a control performance point of view. To compare the performance of the two generators a flexible 7.5kW test facility has been constructed. Initially, a classical cascade vector controller is applied to both generators. This controller is based on the stator voltage field orientation method with an inner rotor (secondary stator) current control loop and an outer active and reactive power control loop. The dynamic and steady state performance of two generators are examined experimentally. The results confirm that the BDFRG has a slower dynamic response when compared to the DFIG due to the larger and variable inductance. Finally a sensorless Direct Power Control (DPC) scheme is applied to both the DFIG and BDFRG. The performance of this scheme is demonstrated with both simulation and experimental results.Engineering and Physical Sciences Research Council (EPSRC) and Overseas Researcher Scholarship (ORS

    Performance Analysis of a Four-Switch Three-Phase Grid-Side Converter with Modulation Simplification in a Doubly-Fed Induction Generator-Based Wind Turbine (DFIG-WT) with Different External Disturbances

    Get PDF
    This paper investigates the performance of a fault-tolerant four-switch three-phase (FSTP) grid-side converter (GSC) in a doubly-fed induction generator-based wind turbine (DFIG-WT). The space vector pulse width modulation (SVPWM) technique is simplified and unified duty ratios are used for controlling the FSTP GSC. Steady DC-bus voltage, sinusoidal three-phase grid currents and unity power factor are obtained. In addition, the balance of capacitor voltages is accomplished based on the analysis of current flows at the midpoint of DC bus in different operational modes. Besides, external disturbances such as fluctuating wind speed and grid voltage sag are considered to test its fault-tolerant ability. Furthermore, the effects of fluctuating wind speed on the performance of DFIG-WT system are explained according to an approximate expression of the turbine torque. The performance of the proposed FSTP GSC is simulated in Matlab/Simulink 2016a based on a detailed 1.5 MW DFIG-WT Simulink model. Experiments are carried out on a 2 kW platform by using a discrete signal processor (DSP) TMS320F28335 controller to validate the reliability of DFIG-WT for the cases with step change of the stator active power and grid voltage sag, respectively
    corecore